Team:UC-Santa Cruz-BioE/Project
From 2014.igem.org
Line 3: | Line 3: | ||
{{CSS/Main}} | {{CSS/Main}} | ||
- | |||
<html> | <html> | ||
+ | <head> | ||
+ | <meta name="author" content="UC-Santa_Cruz-BioE"> | ||
+ | <meta name="generator" content="WYSIWYG Web Builder 9 - http://www.wysiwygwebbuilder.com"> | ||
+ | <title>Project</title> | ||
+ | <style> | ||
+ | body | ||
+ | { | ||
- | + | background-color: #1E28FA; | |
- | + | background-image:url(https://static.igem.org/mediawiki/2014/b/be/Bioebackgroundgradient.png); | |
+ | background-repeat: no-repeat; | ||
+ | background-color: #1E28FA; | ||
+ | color: #000000; | ||
+ | font-family: Arial; | ||
+ | font-size: 16px; | ||
+ | margin: 5; | ||
+ | padding: 0; | ||
+ | } | ||
+ | p | ||
+ | { | ||
+ | background-color:#FFFFFF; | ||
+ | } | ||
+ | ol{ | ||
+ | background-color:#FFFFFF; | ||
- | + | } | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | < | + | a |
- | <!-- | + | { |
- | < | + | color: #0000FF; |
+ | text-decoration: underline; | ||
+ | } | ||
+ | a:visited | ||
+ | { | ||
+ | color: #800080; | ||
+ | } | ||
+ | a:active | ||
+ | { | ||
+ | color: #FF0000; | ||
+ | } | ||
+ | a:hover | ||
+ | { | ||
+ | color: #0000FF; | ||
+ | text-decoration: underline; | ||
+ | } | ||
+ | #Line1 | ||
+ | { | ||
+ | color: #69FBE6; | ||
+ | background-color: #69FBE6; | ||
+ | border-width: 0px; | ||
+ | } | ||
+ | #Line2 | ||
+ | { | ||
+ | color: #69FBE6; | ||
+ | background-color: #69FBE6; | ||
+ | border-width: 0px; | ||
+ | } | ||
+ | #wb_TextArt1 a img | ||
+ | { | ||
+ | position: absolute; | ||
+ | } | ||
+ | #wb_TextArt1 span | ||
+ | { | ||
+ | position: absolute; | ||
+ | } | ||
+ | #wb_TextArt1 a .hover | ||
+ | { | ||
+ | visibility: hidden; | ||
+ | } | ||
+ | #wb_TextArt1 a:hover .hover | ||
+ | { | ||
+ | visibility: visible; | ||
+ | } | ||
+ | #wb_TextArt1 a:hover span | ||
+ | { | ||
+ | visibility: hidden; | ||
+ | } | ||
+ | #Line3 | ||
+ | { | ||
+ | color: #B5FF96; | ||
+ | background-color: #B5FF96; | ||
+ | border-width: 0px; | ||
+ | } | ||
+ | #Line4 | ||
+ | { | ||
+ | color: #B5FF96; | ||
+ | background-color: #B5FF96; | ||
+ | border-width: 0px; | ||
+ | } | ||
+ | #wb_Text1 | ||
+ | { | ||
+ | background-color: transparent; | ||
+ | border: 0px #000000 solid; | ||
+ | padding: 0; | ||
+ | text-align: left; | ||
+ | } | ||
+ | #wb_Text1 div | ||
+ | { | ||
+ | text-align: left; | ||
+ | } | ||
+ | #SiteSearch1_keyword | ||
+ | { | ||
+ | border: 2px #191970 solid; | ||
+ | background-color: #FFFFFF; | ||
+ | color :#000000; | ||
+ | font-family: Arial; | ||
+ | font-size: 13px; | ||
+ | text-align: left; | ||
+ | vertical-align: middle; | ||
+ | } | ||
+ | #SiteSearch1_label | ||
+ | { | ||
+ | color: #191970; | ||
+ | cursor: text; | ||
+ | font-family: Arial; | ||
+ | font-size: 13px; | ||
+ | text-align: left; | ||
+ | } | ||
+ | #Button1 | ||
+ | { | ||
+ | border: 1px #A9A9A9 solid; | ||
+ | background-color: #F0F0F0; | ||
+ | color: #A9A9A9; | ||
+ | font-family: Arial; | ||
+ | font-size: 13px; | ||
+ | } | ||
+ | #NavigationBar1 ul.navbar | ||
+ | { | ||
+ | list-style: none; | ||
+ | margin: 0; | ||
+ | padding: 0; | ||
+ | } | ||
+ | #NavigationBar1 ul.navbar li | ||
+ | { | ||
+ | height: 30px; | ||
+ | width: 131px; | ||
+ | margin: 0px 0px 4px 0px; | ||
+ | vertical-align: bottom; | ||
+ | } | ||
+ | #NavigationBar1 ul.navbar li a | ||
+ | { | ||
+ | display: block; | ||
+ | position: relative; | ||
+ | } | ||
+ | #NavigationBar1 ul.navbar li a img | ||
+ | { | ||
+ | position: absolute; | ||
+ | z-index: 1; | ||
+ | border-width: 0px; | ||
+ | } | ||
+ | #NavigationBar1 ul.navbar li span | ||
+ | { | ||
+ | display: block; | ||
+ | height: 30px; | ||
+ | width: 131px; | ||
+ | position: absolute; | ||
+ | z-index: 2; | ||
+ | } | ||
+ | #NavigationBar1 a .hover | ||
+ | { | ||
+ | visibility: hidden; | ||
+ | } | ||
+ | #NavigationBar1 a:hover .hover | ||
+ | { | ||
+ | visibility: visible; | ||
+ | } | ||
+ | #NavigationBar1 a:hover span | ||
+ | { | ||
+ | visibility: hidden; | ||
+ | } | ||
+ | </style> | ||
+ | <script type="text/javascript" src="jquery-1.9.1.min.js"></script> | ||
+ | <script type="text/javascript" src="./searchindex.js"></script> | ||
+ | <script type="text/javascript"> | ||
+ | var features = 'toolbar=no,menubar=no,location=no,scrollbars=yes,resizable=yes,status=no,left=,top=,width=,height='; | ||
+ | var searchDatabase = new SearchDatabase(); | ||
+ | var searchResults_length = 0; | ||
+ | var searchResults = new Object(); | ||
+ | function searchPage(features) | ||
+ | { | ||
+ | var element = document.getElementById('SiteSearch1_keyword'); | ||
+ | if (element.value.length != 0 || element.value != " ") | ||
+ | { | ||
+ | var value = unescape(element.value); | ||
+ | var keywords = value.split(" "); | ||
+ | searchResults_length = 0; | ||
+ | for (var i=0; i<database_length; i++) | ||
+ | { | ||
+ | var matches = 0; | ||
+ | var words = searchDatabase[i].title + " " + searchDatabase[i].description + " " + searchDatabase[i].keywords; | ||
+ | for (var j = 0; j < keywords.length; j++) | ||
+ | { | ||
+ | var pattern = new RegExp(keywords[j], "i"); | ||
+ | var result = words.search(pattern); | ||
+ | if (result >= 0) | ||
+ | { | ||
+ | matches++; | ||
+ | } | ||
+ | else | ||
+ | { | ||
+ | matches = 0; | ||
+ | } | ||
+ | } | ||
+ | if (matches == keywords.length) | ||
+ | { | ||
+ | searchResults[searchResults_length++] = searchDatabase[i]; | ||
+ | } | ||
+ | } | ||
+ | var wndResults = window.open('about:blank', '', features); | ||
+ | setTimeout(function() | ||
+ | { | ||
+ | var results = ''; | ||
+ | var html = '<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Search results<\/title><\/head>'; | ||
+ | html = html + '<body style="background-color:#FFFFFF;margin:0;padding:2px 2px 2px 2px;">'; | ||
+ | html = html + '<span style="font-family:Arial;font-size:13px;color:#000000">'; | ||
+ | for (var n=0; n<searchResults_length; n++) | ||
+ | { | ||
+ | var page_keywords = searchResults[n].keywords; | ||
+ | results = results + '<strong><a style="color:#0000FF" target="_parent" href="'+searchResults[n].url+'">'+searchResults[n].title +'<\/a><\/strong><br>Keywords: ' + page_keywords +'<br><br>\n'; | ||
+ | } | ||
+ | if (searchResults_length == 0) | ||
+ | { | ||
+ | results = 'No results'; | ||
+ | } | ||
+ | else | ||
+ | { | ||
+ | html = html + searchResults_length; | ||
+ | html = html + ' result(s) found for search term: '; | ||
+ | html = html + value; | ||
+ | html = html + '<br><br>'; | ||
+ | } | ||
+ | html = html + results; | ||
+ | html = html + '<\/span>'; | ||
+ | html = html + '<\/body><\/html>'; | ||
+ | wndResults.document.write(html); | ||
+ | },100); | ||
+ | } | ||
+ | return false; | ||
+ | } | ||
+ | function searchParseURL() | ||
+ | { | ||
+ | var url = decodeURIComponent(window.location.href); | ||
+ | if (url.indexOf('?') > 0) | ||
+ | { | ||
+ | var terms = ''; | ||
+ | var params = url.split('?'); | ||
+ | var values = params[1].split('&'); | ||
+ | for (var i=0;i<values.length;i++) | ||
+ | { | ||
+ | var param = values[i].split('='); | ||
+ | if (param[0] == 'q') | ||
+ | { | ||
+ | terms = unescape(param[1]); | ||
+ | break; | ||
+ | } | ||
+ | } | ||
+ | if (terms != '') | ||
+ | { | ||
+ | var element = document.getElementById('SiteSearch1_keyword'); | ||
+ | element.value = terms; | ||
+ | searchPage(''); | ||
+ | } | ||
+ | } | ||
+ | } | ||
+ | </script> | ||
+ | <script type="text/javascript"> | ||
+ | $(document).ready(function() | ||
+ | { | ||
+ | searchParseURL(); | ||
+ | var $search = $('#SiteSearch1_form'); | ||
+ | var $searchInput = $search.find('input'); | ||
+ | var $searchLabel = $search.find('label'); | ||
+ | if ($searchInput.val()) | ||
+ | { | ||
+ | $searchLabel.hide(); | ||
+ | } | ||
+ | $searchInput.focus(function() | ||
+ | { | ||
+ | $searchLabel.hide(); | ||
+ | }).blur(function() | ||
+ | { | ||
+ | if (this.value == '') | ||
+ | { | ||
+ | $searchLabel.show(); | ||
+ | } | ||
+ | }); | ||
+ | $searchLabel.click(function() | ||
+ | { | ||
+ | $searchInput.trigger('focus'); | ||
+ | }); | ||
+ | }); | ||
+ | </script> | ||
+ | </head> | ||
+ | <body> | ||
+ | <!..Code to edit the page. Don't Erase!..> | ||
+ | <p><a href="https://2014.igem.org/wiki/index.php?title=Team:UC-Santa_Cruz-BioE/Team&action=edit"style="color:#FFFFFF; position:absolute; left:400px; top:82px; z-index:1; "> Click here to edit this page!</a>,</p> | ||
- | < | + | <hr id="Line1" style="margin:0;padding:0;position:absolute;left:0px;top:340px;width:1475px;height:5px;z-index:0;"> |
- | < | + | <hr id="Line2" style="margin:0;padding:0;position:absolute;left:0px;top:149px;width:1475px;height:5px;z-index:1;"> |
+ | <div id="wb_Shape1" style="position:absolute;left:24px;top:153px;width:176px;height:1205px;z-index:2;"> | ||
+ | <img src="https://static.igem.org/mediawiki/2014/d/d4/Leftborder.png" id="Shape1" alt="" style="border-width:0;width:176px;height:1205px;"></div> | ||
+ | <div id="wb_Shape2" style="position:absolute;left:0px;top:166px;width:1478px;height:160px;filter:alpha(opacity=88);-moz-opacity:0.88;opacity:0.88;z-index:3;"> | ||
+ | <img src="https://static.igem.org/mediawiki/2014/9/90/Topborder.png" id="Shape2" alt="" style="border-width:0;width:1478px;height:160px;"></div> | ||
+ | <div id="wb_TextArt1" style="position:absolute;left:376px;top:211px;width:418px;height:61px;z-index:7;"> | ||
+ | <a href=""><img class="hover" src="https://static.igem.org/mediawiki/2014/8/82/UcsantacruzbioEproject.png" alt="Project" title="Project" style="border-width:0;width:418px;height:61px;"><span><img src="https://static.igem.org/mediawiki/2014/8/82/UcsantacruzbioEproject.png" id="TextArt1" alt="Our Project" title="Our Project" style="border-width:0;width:418px;height:61px;"></span></a></div> | ||
+ | <div id="wb_Shape6" style="position:absolute;left:7px;top:162px;width:199px;height:186px;z-index:8;"> | ||
+ | <img src="https://static.igem.org/mediawiki/2014/d/df/UcsantacruzteamLogo.png" id="Shape6" alt="" style="border-width:0;width:199px;height:186px;"></div> | ||
+ | <div id="wb_Shape7" style="position:absolute;left:297px;top:370px;width:710px;height:54px;z-index:9;"> | ||
+ | <img src="https://static.igem.org/mediawiki/2014/7/75/Bottomline.png" id="Shape7" alt="" style="border-width:0;width:710px;height:54px;"></div> | ||
+ | <hr id="Line3" style="margin:0;padding:0;position:absolute;left:298px;top:356px;width:706px;height:6px;z-index:10;"> | ||
+ | <hr id="Line4" style="margin:0;padding:0;position:absolute;left:298px;top:434px;width:706px;height:6px;z-index:11;"> | ||
+ | <div id="wb_Text1" style="position:absolute;left:374px;top:305px;width:453px;height:37px;z-index:12;text-align:left;"> | ||
+ | <span style="color:#191970;font-family:Arial;font-size:32px;"><strong><h1>...</h1><!..A HEADING!..></strong></span></div> | ||
- | < | + | <!.. Paragraphs and Subheadings go here!!!> |
- | + | <div id="paragraph1" style=" position: absolute; left:243px; top:444px; width: 800px; text-align=left; "> | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | < | + | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
+ | <p style=" background-color:#FFFFFF";> | ||
A microbial fuel cell (MFC) uses bacteria to break down organic compounds found in waste water and generate an electric current. This is a sustainable way to generate power from waste material, with the potential of achieving over 50% energy efficiency. Our project will focus on genetically engineering the bacteria Shewanella oneidensis in ways that will make the microbial fuel cell more efficient. | A microbial fuel cell (MFC) uses bacteria to break down organic compounds found in waste water and generate an electric current. This is a sustainable way to generate power from waste material, with the potential of achieving over 50% energy efficiency. Our project will focus on genetically engineering the bacteria Shewanella oneidensis in ways that will make the microbial fuel cell more efficient. | ||
- | </p> | + | </p><br> |
- | <p> | + | <p style=" background-color:#FFFFFF";> |
According to the 2013 International Energy Outlook, energy demands will increase 56% by 2040. This rapidly growing demand for energy has sparked a search for sustainable and renewable energy sources. While many technologies are being developed to address this, some of the most intriguing are bioelectrochemical systems like the microbial fuel cell (MFC). The distinctiveness of bioelectrochemical systems come from their ability to simultaneously take on two ecological vices with: sustainable energy production, and waste-water treatment. The basics of how bacteria in an MFC produce electricity are understood, however we feel more research needs to be done to increase efficiency at the microbial level. | According to the 2013 International Energy Outlook, energy demands will increase 56% by 2040. This rapidly growing demand for energy has sparked a search for sustainable and renewable energy sources. While many technologies are being developed to address this, some of the most intriguing are bioelectrochemical systems like the microbial fuel cell (MFC). The distinctiveness of bioelectrochemical systems come from their ability to simultaneously take on two ecological vices with: sustainable energy production, and waste-water treatment. The basics of how bacteria in an MFC produce electricity are understood, however we feel more research needs to be done to increase efficiency at the microbial level. | ||
- | </p> | + | </p><br> |
- | <p> | + | <p style=" background-color:#FFFFFF";> |
The most popular research for microbial fuel cells has been poised towards increasing the power density using more state-of-the-art synthetic materials in the structural design. Our project will focus on another aspect: modifying the microbes which are responsible for generating the electricity. Many of the current limiting factors of MFC performance comes from the bacteria themselves. We plan to address these factors with our two project goals. | The most popular research for microbial fuel cells has been poised towards increasing the power density using more state-of-the-art synthetic materials in the structural design. Our project will focus on another aspect: modifying the microbes which are responsible for generating the electricity. Many of the current limiting factors of MFC performance comes from the bacteria themselves. We plan to address these factors with our two project goals. | ||
- | </p> | + | </p><br> |
- | <p> | + | <p style=" background-color:#FFFFFF";> |
The first and most apparent limiting factor in an MFC is the surface area of the anode. The bacteria can only generate electricity when it is in direct contact with, or in close proximity to the surface of the anode. To take full advantage of the limited surface area, it is best for the bacteria to grow in a dense film called a biofilm. This leads to our first goal: | The first and most apparent limiting factor in an MFC is the surface area of the anode. The bacteria can only generate electricity when it is in direct contact with, or in close proximity to the surface of the anode. To take full advantage of the limited surface area, it is best for the bacteria to grow in a dense film called a biofilm. This leads to our first goal: | ||
- | </p> | + | </p><br> |
- | <p> | + | <p style=" background-color:#FFFFFF";> |
- | <ol> | + | <ol style=" background-color:#FFFFFF; list-style-type:none;"> |
- | 1. Increase biofilm growth rate of Shewanella oneidensis on the MFC anode. | + | <li>1. Increase biofilm growth rate of Shewanella oneidensis on the MFC anode.</li> |
</ol> | </ol> | ||
</p> | </p> | ||
- | <p> | + | <p style=" background-color:#FFFFFF";> |
We will also focus on the bacteria's ability to transfer electrons from the compounds in the waste water to the anode. There are many pathways which the bacteria can use to facilitate this, however studies have shown that Shewanella does not utilize them in the most efficient way. Much of inefficiency is due to the generation an excretion of Acetate. This is our second goal: | We will also focus on the bacteria's ability to transfer electrons from the compounds in the waste water to the anode. There are many pathways which the bacteria can use to facilitate this, however studies have shown that Shewanella does not utilize them in the most efficient way. Much of inefficiency is due to the generation an excretion of Acetate. This is our second goal: | ||
</p> | </p> | ||
- | <p> | + | <p style=" background-color:#FFFFFF;"> |
- | <ol> | + | <ol style=" background-color:#FFFFFF; list-style-type:none;"> |
- | 2. Alter the metabolism used by the bacteria to utilize the energy lost by Acetate generation | + | <li> 2.Alter the metabolism used by the bacteria to utilize the energy lost by Acetate generation</li> |
</ol> | </ol> | ||
</p> | </p> | ||
<br> | <br> | ||
- | <h3>References </h3> | + | <h3 style="background-color:#FFFFFF;">References </h3> |
- | <p> | + | <p style=" background-color:#FFFFFF;"> |
- | <ol> | + | <ol style="background-color=#FFFFFF;"> |
<li>Korneel Rabaey, ed. Bioelectrochemical systems: from extracellular electron transfer to biotechnological application. IWA publishing, 2010.</li> | <li>Korneel Rabaey, ed. Bioelectrochemical systems: from extracellular electron transfer to biotechnological application. IWA publishing, 2010.</li> | ||
Line 129: | Line 367: | ||
</ol> | </ol> | ||
</p> | </p> | ||
- | <h4>Additional Resources</h4> | + | <h4 style=" background-color:#FFFFFF;">Additional Resources</h4> |
- | <p>(Referred to in <a href="https://igem.org/Team.cgi?year=2014&team_name=UC-Santa_Cruz-BioE">Abstract</a>)</p> | + | <p style=" background-color:#FFFFFF";>(Referred to in <a href="https://igem.org/Team.cgi?year=2014&team_name=UC-Santa_Cruz-BioE">Abstract</a>)</p> |
- | <ul> | + | <ul style=" background-color:#FFFFFF;"> |
<li>8. Ching, Leang, and Nikhil S. Malvankar. "Engineering Geobacter Sulffureducens to Produce a Highly Cohesive Conductive Matrix with Enhanced Capacity for Current Production." Energy and Environmental Science (2013): 1901-908. Web.</li> | <li>8. Ching, Leang, and Nikhil S. Malvankar. "Engineering Geobacter Sulffureducens to Produce a Highly Cohesive Conductive Matrix with Enhanced Capacity for Current Production." Energy and Environmental Science (2013): 1901-908. Web.</li> | ||
- | </ul> | + | </ul></p> |
- | </ | + | </div> |
- | + | ||
- | + | ||
- | + | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | + | <div id="NavigationBar1" style="position:absolute;left:42px;top:353px;width:133px;height:168px;z-index:19;"> | |
- | </ | + | <!..The MENU..> |
+ | <ul class="navbar"> | ||
+ | <li><a href="https://2014.igem.org/Team:UC-Santa_Cruz-BioE"><img alt="" src="https://static.igem.org/mediawiki/2014/7/7a/Homeh.gif" class="hover"><span><img alt="" src="https://static.igem.org/mediawiki/2014/7/74/Home.gif"></span></a></li> | ||
+ | <li><a href="https://2014.igem.org/Team:UC-Santa_Cruz-BioE/Team"><img alt="" src="https://static.igem.org/mediawiki/2014/5/56/Teamh.gif" class="hover"><span><img alt="" src="https://static.igem.org/mediawiki/2014/4/4e/Team.gif"></span></a></li> | ||
+ | <li><a href="https://igem.org/Team.cgi?year=2014&team_name=UC-Santa_Cruz-BioE"><img alt="" src="https://static.igem.org/mediawiki/2014/d/db/Officialh.gif" class="hover"><span><img alt="" src="https://static.igem.org/mediawiki/2014/b/bb/Official.gif"></span></a></li> | ||
+ | <li><a href="https://2014.igem.org/Team:UC-Santa_Cruz-BioE/Project"><img alt="" src="https://static.igem.org/mediawiki/2014/c/c7/Projecth.gif" class="hover"><span><img alt="" src="https://static.igem.org/mediawiki/2014/a/a8/Project.gif"></span></a></li> | ||
+ | <li><a href="https://2014.igem.org/Team:UC-Santa_Cruz-BioE/Parts"><img alt="" src="https://static.igem.org/mediawiki/2014/c/c7/Partsh.gif" class="hover"><span><img alt="" src="https://static.igem.org/mediawiki/2014/a/a0/Parts.gif"></span></a></li> | ||
+ | <li><a href="https://2014.igem.org/Team:UC-Santa_Cruz-BioE/Modeling"><img alt="" src="https://static.igem.org/mediawiki/2014/e/ea/Modelh.gif" class="hover"><span><img alt="" src="https://static.igem.org/mediawiki/2014/e/ef/Model.gif"></span></a></li> | ||
+ | <li><a href="https://2014.igem.org/Team:UC-Santa_Cruz-BioE/Notebook"><img alt="" src="https://static.igem.org/mediawiki/2014/f/f1/Noteh.gif" class="hover"><span><img alt="" src="https://static.igem.org/mediawiki/2014/6/62/Note.gif"></span></a></li> | ||
+ | <li><a href="https://2014.igem.org/Team:UC-Santa_Cruz-BioE/Safety"><img alt="" src="https://static.igem.org/mediawiki/2014/4/4f/Safetyh.gif" class="hover" <span><img alt="" src="https://static.igem.org/mediawiki/2014/4/4b/Safety.gif"></span></a></li> | ||
+ | <li><a href="https://2014.igem.org/Team:UC-Santa_Cruz-BioE/Attributions"><img alt="" src="https://static.igem.org/mediawiki/2014/c/cb/Atth.gif" class="hover"> <span><img alt="" src="https://static.igem.org/mediawiki/2014/a/aa/Att.gif"></span></a></li> | ||
+ | </ul> | ||
+ | </div> | ||
+ | <div id="wb_Image1" style="position:absolute;left:217px;top:352px;width:65px;height:64px;z-index:21;"> | ||
+ | <a href="https://2014.igem.org/Main_Page"><img src="https://static.igem.org/mediawiki/2014/e/ea/UCsantaIgemlogo_300px.png" id="Image1" alt="" style="width:65px;height:64px;"></a></div> | ||
+ | </body> | ||
</html> | </html> |
Revision as of 17:35, 15 October 2014
Click here to edit this page!,
...
A microbial fuel cell (MFC) uses bacteria to break down organic compounds found in waste water and generate an electric current. This is a sustainable way to generate power from waste material, with the potential of achieving over 50% energy efficiency. Our project will focus on genetically engineering the bacteria Shewanella oneidensis in ways that will make the microbial fuel cell more efficient.
According to the 2013 International Energy Outlook, energy demands will increase 56% by 2040. This rapidly growing demand for energy has sparked a search for sustainable and renewable energy sources. While many technologies are being developed to address this, some of the most intriguing are bioelectrochemical systems like the microbial fuel cell (MFC). The distinctiveness of bioelectrochemical systems come from their ability to simultaneously take on two ecological vices with: sustainable energy production, and waste-water treatment. The basics of how bacteria in an MFC produce electricity are understood, however we feel more research needs to be done to increase efficiency at the microbial level.
The most popular research for microbial fuel cells has been poised towards increasing the power density using more state-of-the-art synthetic materials in the structural design. Our project will focus on another aspect: modifying the microbes which are responsible for generating the electricity. Many of the current limiting factors of MFC performance comes from the bacteria themselves. We plan to address these factors with our two project goals.
The first and most apparent limiting factor in an MFC is the surface area of the anode. The bacteria can only generate electricity when it is in direct contact with, or in close proximity to the surface of the anode. To take full advantage of the limited surface area, it is best for the bacteria to grow in a dense film called a biofilm. This leads to our first goal:
- 1. Increase biofilm growth rate of Shewanella oneidensis on the MFC anode.
We will also focus on the bacteria's ability to transfer electrons from the compounds in the waste water to the anode. There are many pathways which the bacteria can use to facilitate this, however studies have shown that Shewanella does not utilize them in the most efficient way. Much of inefficiency is due to the generation an excretion of Acetate. This is our second goal:
- 2.Alter the metabolism used by the bacteria to utilize the energy lost by Acetate generation
References
- Korneel Rabaey, ed. Bioelectrochemical systems: from extracellular electron transfer to biotechnological application. IWA publishing, 2010.
- Franks, Ashley E., and Kelly P. Nevin. "Microbial fuel cells, a current review." Energies 3.5 (2010): 899-919.
- Brutinel ED, Gralnick JA. Anomalies of the anaerobic tricarboxylic acid cycle in Shewanella oneidensis revealed by Tn-seq. Mol Microbiol. 2012 Oct;86(2):273-83. doi: 10.1111/j.1365-2958.2012.08196.x. Epub 2012 Aug 27. PubMed PMID: 22925268.
- Papagianni M. Recent advances in engineering the central carbon metabolism of industrially important bacteria. Microb Cell Fact. 2012 Apr 30;11:50. doi: 10.1186/1475-2859-11-50. Review. PubMed PMID: 22545791; PubMed Central PMCID: PMC3461431
- Rabaey K, Verstraete W. Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol. 2005 Jun;23(6):291-8. Review. PubMed PMID: 15922081.
- Beliaev, Alex S., et al. "Gene and protein expression profiles of Shewanella oneidensis during anaerobic growth with different electron acceptors." Omics: a journal of integrative biology 6.1 (2002): 39-60.
- Thormann, Kai M., et al. "Control of formation and cellular detachment from Shewanella oneidensis MR-1 biofilms by cyclic di-GMP." Journal of Bacteriology 188.7 (2006): 2681-2691.
Additional Resources
(Referred to in Abstract)
- 8. Ching, Leang, and Nikhil S. Malvankar. "Engineering Geobacter Sulffureducens to Produce a Highly Cohesive Conductive Matrix with Enhanced Capacity for Current Production." Energy and Environmental Science (2013): 1901-908. Web.