Team:StanfordBrownSpelman/Building The Drone
From 2014.igem.org
(Difference between revisions)
Line 97: | Line 97: | ||
<h5><center>Starting Small, Ending Big</h5> | <h5><center>Starting Small, Ending Big</h5> | ||
<h6> | <h6> | ||
+ | We began by experimenting with producing cellulose in sheets and cellulose acetate non-biologically. Seeing that primarily cellulose materials are extremely strong and tough, but tear easily and becomes soggy when wet, we sought to increase the durability of the cellulose by grinding it into pieces to create a cellulose paste (that became spreadable into sheets like paper made from wood pulp) and stretching and twisting it into ropes to add strength. A few of our material samples follow: </h6> | ||
+ | </div></div> | ||
+ | <div class="small-7 small-centered columns"><br><center><img src="https://static.igem.org/mediawiki/2014/3/38/SBSiGEM2014_Cellulose_Screw.jpg"><br> | ||
+ | <h6><center>A spiral rope made by waving together several cellulose sheets and dehydrating them.</center></h6> | ||
+ | </div> | ||
+ | <div class="small-7 small-centered columns"><br><center><img src="https://static.igem.org/mediawiki/2014/d/d2/SBSiGEM2014_Cellulose_Leather.jpg"><br> | ||
+ | <h6><center>A piece of cellulose leather generated by laying multiple sheets of cellulose together in perpendicular orientations.</center></h6> | ||
+ | </div> | ||
+ | <div class="row"> | ||
+ | <div id="subheader" class="small-8 small-centered columns"><h6> | ||
Realizing that cellulose acetate is tough but thin, our team was in need of a building material that was tough and lightweight. So, we reached out to Evocative Design, a pioneering fungal-mycelium-based biomaterial company, to prototype a mycelium form that could serve as the chassis of our vehicle. Thanks to Evocative, we were able to construct a prototype biological unmanned aerial vehicle!<br><br>But we didn't stop there. Our team was enthusiastic about drone design and so we developed concept UAV designs meant to inspire future scientists and designers to think outside the box about how a future, partially living vehicle might look. Pseudo-natural and pseudo-industrial, our drone design references the traditional biological architecture of birds while embracing industrial additive manufacturability.<br><br>All 3D printable files for this concept drone are available in the downloads section. Images of our work follow:</h6> | Realizing that cellulose acetate is tough but thin, our team was in need of a building material that was tough and lightweight. So, we reached out to Evocative Design, a pioneering fungal-mycelium-based biomaterial company, to prototype a mycelium form that could serve as the chassis of our vehicle. Thanks to Evocative, we were able to construct a prototype biological unmanned aerial vehicle!<br><br>But we didn't stop there. Our team was enthusiastic about drone design and so we developed concept UAV designs meant to inspire future scientists and designers to think outside the box about how a future, partially living vehicle might look. Pseudo-natural and pseudo-industrial, our drone design references the traditional biological architecture of birds while embracing industrial additive manufacturability.<br><br>All 3D printable files for this concept drone are available in the downloads section. Images of our work follow:</h6> | ||
</div></div> | </div></div> |
Revision as of 16:06, 15 October 2014