Team:Paris Bettencourt/Project/Eliminate Smell
From 2014.igem.org
Line 212: | Line 212: | ||
<p class=text2> | <p class=text2> | ||
<img id=image2 src="https://static.igem.org/mediawiki/2014/1/17/Dont_sweat_it_genes_pb.png"></br> | <img id=image2 src="https://static.igem.org/mediawiki/2014/1/17/Dont_sweat_it_genes_pb.png"></br> | ||
- | <span class=legende><b>Figure 1. Enzymes responsible for body odor in the human axilla | + | <span class=legende><b>Figure 1. Enzymes responsible for body odor in the human axilla (Tauch, 2013). </b> </span> </br> <br> |
<img id=image1 src="https://static.igem.org/mediawiki/2014/3/37/Dontsweatit_Fig2_PB.jpg"></br> | <img id=image1 src="https://static.igem.org/mediawiki/2014/3/37/Dontsweatit_Fig2_PB.jpg"></br> | ||
Line 233: | Line 233: | ||
In previous literature, it has been determined that there are a few key enzymes responsible for body odor, such as AgaA, AecD, Ldh, and AckA. Figure 1 shows a description of the enzymes studied in our project and the reactions corresponding to each enzyme. <br><br> | In previous literature, it has been determined that there are a few key enzymes responsible for body odor, such as AgaA, AecD, Ldh, and AckA. Figure 1 shows a description of the enzymes studied in our project and the reactions corresponding to each enzyme. <br><br> | ||
- | The AgaA enzyme in <i>Corynebacterium striatum</i> is found to be a major source of "pungent" or "musky" odor in humans | + | The AgaA enzyme in <i>Corynebacterium striatum</i> is found to be a major source of "pungent" or "musky" odor in humans (Kligman, 1981). A specific bacterial aminoacylase cleaves odorant precursors secreted in the human axilla (Acuna,2003), and hydrolyzes 3-methyl-2-hexenoyl-glutamine (3M2H-gln) into 3-methyl-2-hexenoic acid (3M2H) and free glutamine. The enzyme is known to have a low specificity for the acyl group, and to act on a range of glutamine conjugates. We cloned agaA into the standard BioBrick vector, and expressed it in <i>E. coli</i>. <br><br> |
Revision as of 09:39, 15 October 2014
BACKGROUND Sweat is initially odorless, but bacteria in your skin microbiome can process some sulfurous compounds present in sweat to release volatile and odorous compounds. In "Don't Sweat It," we are trying to find natural mutants of the genes that produce odorous compounds, and allow us to smell like ourselves. |
AIMS 1. Find the bacteria and genes responsible for body odor in human sweat samples. |
RESULTS 1. MICROBIOME RESULTS... Found Corynebacterium species in skin samples..genes?? Made biobrick of agaA (main gene responsible for body odor) in pSB1C3. |
The Microbiome | CRISPR | The Probiotic Cream | References |
Figure 1. Enzymes responsible for body odor in the human axilla (Tauch, 2013).
Figure 2. 14 people smelled two tubes of E. coli grown to saturation in LB. One culture carried synthetic agaA and other an empty vector control. 13 people out of 14 rated the E. coli carrying agaA as more smelly (pink) than the control(violet). Experiments were double-blind. Significance was confirmed by Chi square test (p-value = 0.001341).
[figure 3 GC analysis] [Figure 4: phylogenetic tree]
[Figure 5: smell test data??]
[Figure 6: megane's stuff??]
1. The Microbiome: Looking for Genes Responsible for Body Odor
Achievements
- Clone AgaA biobrick in E. coli.
- Find Corynebacterium species in axillary samples.
- Find genes related to odor in skin sweat samples.
Introduction
In previous literature, it has been determined that there are a few key enzymes responsible for body odor, such as AgaA, AecD, Ldh, and AckA. Figure 1 shows a description of the enzymes studied in our project and the reactions corresponding to each enzyme.
The AgaA enzyme in Corynebacterium striatum is found to be a major source of "pungent" or "musky" odor in humans (Kligman, 1981). A specific bacterial aminoacylase cleaves odorant precursors secreted in the human axilla (Acuna,2003), and hydrolyzes 3-methyl-2-hexenoyl-glutamine (3M2H-gln) into 3-methyl-2-hexenoic acid (3M2H) and free glutamine. The enzyme is known to have a low specificity for the acyl group, and to act on a range of glutamine conjugates. We cloned agaA into the standard BioBrick vector, and expressed it in E. coli.
Results
In order to analyze the smell created by AgaA, agaA was successfully cloned into E. coli. A noticeable odor was produced by agaA-expressing E. coli grown in selective LB, described as "beer-like" or "cheese-like". We took this to be evidence that the enzyme was functional and acting on a non-native substrate in LB media. We confirmed this observation with a formal smell test (Figure 2) as well as analysis by gas chromatography (Figure 3).
We analyzed human sweat samples for two things. First, we conducted 16S sequencing of the samples collected in order to determine the types of Corynebacterium species present in the sample. The reason we were interested in Corynebacterium was because it is known from literature that one of the main enzyme responsible for the body odor smell (AgaA) is found in Corynebacterium species. Not only did we do 16S sequencing on these samples, but also conducted smell tests on the same samples in order to see if there was a correlation between odor smell and presence of Corynebacterium species.
Second, we conducted Sanger sequencing of axillary sweat samples for the genes in Figure 1. [MEGANE ADD STUFF HERE ABOUT WHAT YOU DID EXACTLY / HOPED TO DO].
Methods
2) CRISPRs: finding natural odorless mutants
IHAB Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut imperdiet diam eget quam imperdiet imperdiet. Mauris dapibus risus felis, sed ornare diam accumsan aliquet. Sed eu turpis porta, porttitor tortor et, condimentum augue. Curabitur a maximus nisi. Vivamus vitae magna ex. Donec congue auctor odio vitae tempus. In a gravida neque, et tristique tortor. Phasellus a odio sit amet enim ornare lobortis. Morbi sodales, diam non rutrum aliquam, ligula mauris consectetur urna, sed interdum quam risus sit amet enim. Aenean euismod enim magna, id pretium eros molestie non. Proin rutrum lobortis leo, sit amet congue erat. Nulla congue pellentesque augue porta dignissim. Pellentesque quis ex sollicitudin, condimentum risus varius, aliquet ipsum. Ut pulvinar aliquet maximus. Praesent imperdiet interdum commodo.
3) Probiotic cream: a cure for body odor
(Figure for the cream.)
References
- Acuna G. et al. A specific bacterial aminoacylase cleaves odorant precursors secreted in the human axilla. J Biol Chem (2003);278(8):5718-27. - Tauch A. et al. Daily battle against body odor: towards the activity of the axillary microbiota. Trends Microbiol (2013)21(6):305-12.
- Kligman AM. et al The microbiology of the human axilla and its relationship to axillary odor. J Invest Dermatol. (1981) 77(5):413-6.