Team:EPF Lausanne/Microfluidics

From 2014.igem.org

(Difference between revisions)
(Undo revision 230578 by Arthurgiroux (talk))
Line 6: Line 6:
<!--  here ends the section that changes the default wiki template to a white full width background -->
<!--  here ends the section that changes the default wiki template to a white full width background -->
-
 
Line 12: Line 11:
<!-- MENU -->
<!-- MENU -->
-
<nav class="navbar navbar-default navbar_alt" role="navigation">
+
<nav class="navbar navbar-default" role="navigation">
   <div class="container-fluid">
   <div class="container-fluid">
     <!-- Brand and toggle get grouped for better mobile display -->
     <!-- Brand and toggle get grouped for better mobile display -->
Line 31: Line 30:
     <div class="nav-collapse">
     <div class="nav-collapse">
       <ul class="nav">
       <ul class="nav">
-
        <li><a href="https://2014.igem.org/Team:EPF_Lausanne">Home</a></li>
+
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne">Home</a></li>
         <li class="dropdown">
         <li class="dropdown">
           <a href="https://2014.igem.org/Team:EPF_Lausanne" class="dropdown-toggle" data-toggle="dropdown">Project <span class="caret"></span></a>
           <a href="https://2014.igem.org/Team:EPF_Lausanne" class="dropdown-toggle" data-toggle="dropdown">Project <span class="caret"></span></a>
           <ul class="dropdown-menu" role="menu">
           <ul class="dropdown-menu" role="menu">
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Overview">Overview</a></li>
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Overview">Overview</a></li>
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Envelope_stress_responsive_bacteria">Stress Responsive</a></li>
 
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Yeast">Osmo Responsive</a></li>
 
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics">Microfluidics</a></li>
 
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Hardware">Hardware</a></li>
 
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Applications">Applications</a></li>
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Applications">Applications</a></li>
-
 
+
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practices</a></li>
-
 
+
          </ul>
-
<!--             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practices</a></li>
+
-
-->          </ul>
+
         </li>
         </li>
-
 
+
        <li class="dropdown">
-
      <li class="dropdown">
+
           <a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook" class="dropdown-toggle active" data-toggle="dropdown">Notebook <span class="caret"></span></a>
-
           <a href="#" class="dropdown-toggle active" data-toggle="dropdown">Achievements <span class="caret"></span></a>
+
           <ul class="dropdown-menu" role="menu">
           <ul class="dropdown-menu" role="menu">
-
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Results">Results</a></li>
+
            <li class="active"><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook">Timeline</a></li>
 +
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Protocol">Protocol</a></li>
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Data">Data</a></li>
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Data">Data</a></li>
-
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Judging">Judging</a></li>
+
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Safety">Safety</a></li>
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Parts" class="active">Parts</a></li>
+
           </ul>
           </ul>
-
        </li>
 
-
 
-
        <li class="dropdown">
 
-
          <a href="#" class="dropdown-toggle" data-toggle="dropdown">Policy &amp; Practice <span class="caret"></span></a>
 
-
          <ul class="dropdown-menu" role="menu">
 
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practice</a></li>
 
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Safety">Bio Safety</a></li>
 
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/PolicyPractice">Policy &amp; Practice</a></li>
 
-
 
-
<!--            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practices</a></li>
 
-
-->          </ul>
 
         </li>
         </li>
       <li class="dropdown">
       <li class="dropdown">
-
           <a href="#" class="dropdown-toggle" data-toggle="dropdown">Notebook <span class="caret"></span></a>
+
           <a href="https://2014.igem.org/Team:EPF_Lausanne/Team" class="dropdown-toggle" data-toggle="dropdown">Team <span class="caret"></span></a>
           <ul class="dropdown-menu" role="menu">
           <ul class="dropdown-menu" role="menu">
-
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook/Bacteria">Bacteria</a></li>
+
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Team">Meet us!</a></li>
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook/Microfluidics">Microfluidics</a></li>
+
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Attributions">Attributions</a></li>
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook/Yeast">Yeast</a></li>
+
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook/I.T">I.T</a></li>
+
-
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Protocol">Protocol</a></li>
+
           </ul>
           </ul>
         </li>
         </li>
       <li class="dropdown">
       <li class="dropdown">
-
           <a href="#" class="dropdown-toggle" data-toggle="dropdown">Team <span class="caret"></span></a>
+
           <a href="https://2014.igem.org/Team:EPF_Lausanne/Team" class="dropdown-toggle" data-toggle="dropdown">Achievements <span class="caret"></span></a>
           <ul class="dropdown-menu" role="menu">
           <ul class="dropdown-menu" role="menu">
-
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook">Timeline</a></li>
+
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Judging">Judging</a></li>
-
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Team">Meet us!</a></li>
+
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Parts">Parts</a></li>
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Attributions">Attributions</a></li>
+
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Acknowledgments">Acknowledgments</a></li>
+
           </ul>
           </ul>
         </li>
         </li>
Line 95: Line 71:
   </div><!-- /.container-fluid -->
   </div><!-- /.container-fluid -->
</nav>
</nav>
-
 
<!-- END MENU -->
<!-- END MENU -->
 +
<!-- ABSTRACT -->
<!-- ABSTRACT -->
 +
<div class="whitebg">
<div class="container">
<div class="container">
-
<div class="box" id="boxbread">
 
-
<ol class="breadcrumb breadcrumb-arrow">
+
<ul class="list-unstyled">
-
                  <li><a href="https://2014.igem.org/Team:EPF_Lausanne"><i class="glyphicon glyphicon-home"></i> Home</a></li>
+
-
                  <li class="dropdown"><a href="#"><i class="glyphicon glyphicon-star"></i> Achievements</a> <b class="caret"></b>
+
-
                    <ul class="dropdown-menu">
+
-
                      <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics/Making/PartI">Part I</a></li>
+
-
                      <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics/Making/PartII">Part II</a></li>
+
-
                    </ul>
+
-
                  </li>
+
-
                  <li class="active"><span><i class="glyphicon glyphicon-th-list"></i> Parts</span></li>
+
-
                </ol>
+
-
</div>
+
-
<div class="row">
+
  <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics/Designing">Designing a chip</a></li>
 +
      <li class="dropdown">
 +
            <a href="#" class="dropdown-toggle" data-toggle="dropdown">
 +
                Making a chip <b class="caret"></b>
 +
            </a>
 +
            <ul class="dropdown-menu">
 +
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics/Making/PartI">Part I</a></li>
 +
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics/Making/PartII">Part II</a></li>
 +
            </ul>
 +
        </li>
 +
</ul>
-
<div class="col col-md-9">
 
-
<div class="whitebg box">
 
 +
<h1 class="cntr">Microfluidics</h1>
-
<!-- PARTS -->
+
<br/>
 +
<div class="cntr">
 +
<a href="https://static.igem.org/mediawiki/2014/d/d8/EPFLmicrofluidics.JPG" data-lightbox="image-1" data-title="EPFL microfluidic chips"><img src="https://static.igem.org/mediawiki/2014/d/d8/EPFLmicrofluidics.JPG" width="80%"></a>
 +
</div>
-
<div id="parts">
+
<!--<p class="lead">Our Biopad is implemented in a microfluidic chip. This tool allows all kinds of analytical experiments and is increasingly used in biological research. From fabrication to applications, find out more about this awesome device here!</p>-->
-
<div class="align-left">
+
-
<h1 class="cntr">PARTS</h1>
+
<h3>Microfluidics and synthetic biology</h3>
 +
<p>Microfluidics is an efficient tool for biological experiments. Its fields of applications go from gene regulatory network analysis to antibody screening. Several laboratory techniques can be adapted to these devices, such as DNA amplification, protein separation or cell sorting.</p>
 +
<p>The chips are generally fabricated from elastomeric materials, such as polydimethylsiloxane (PDMS) and contain micron-sized channels with integrated micromechanical tools (mixer, valve, pump…). This allows massive parallelisation as well as great modularity of the experiments.</p>
 +
<p>Most soluble reagents can be used, including DNA, proteins and small molecule libraries. As we focused our work on E.coli and S. cerevisiae, most of our experiments included culture of these species on-chip during our experiments. We first used the MITOMI chip which was invented in the lab of our supervisor Prof. Maerkl. We then designed new chips that were more adapted to stress the cells by pressure, as needed to implement the final “BioPad”.</p>
-
<section id="dna">
 
-
<h3 class="section-heading">DNA parts submitted by the 2014 EPFL iGEM team</h3>
 
-
<p class="lead">
 
-
Our team submitted a total of 55 Biobricks (biobrick 51 does not exist).</p>
 
-
<p class="lead">
 
-
In addition, 4 microfluidic designs have also been submitted to the registry.</p>
 
-
<table class="table table-striped table-hover" id="biobricks_list">
 
-
  <tr>
 
-
    <th>Biobrick</th>
 
-
    <th>What it is</th>
 
-
    <th>Function</th>
 
-
    <th>Why do we use it?</th>
 
-
    <th>Group</th>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486000</td>
 
-
    <td>CpxR coding sequence</td>
 
-
    <td>Transcription factor</td>
 
-
    <td>To make most of our biobricks!</td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486001</td>
 
-
    <td>CpxR under arabinose promoter</td>
 
-
    <td>Treanscription factor</td>
 
-
    <td> </td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486002</td>
 
-
    <td>PAra + sfGFP CpxR [Nterm]</td>
 
-
    <td>Expresses fused protein</td>
 
-
    <td>Test CpxR expression & Ara promoter</td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486003</td>
 
-
    <td>Flexible linker</td>
 
-
    <td>Attaches two proteins together</td>
 
-
    <td> </td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486004</td>
 
-
    <td>Flexible linker</td>
 
-
    <td>Attaches two proteins together</td>
 
-
    <td> </td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486005</td>
 
-
    <td>PAra + CpxR sfGFP [Cterm]</td>
 
-
    <td>Expresses fused protein</td>
 
-
    <td>Test CpxR expression & Ara promoter</td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486006</td>
 
-
    <td>IFP[1]</td>
 
-
    <td>N terminus of split IFP</td>
 
-
    <td> </td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486007</td>
 
-
    <td>IFP[2]</td>
 
-
    <td>C terminus of split IFP</td>
 
-
    <td> </td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486008</td>
 
-
    <td>CxpR & Split IFP1.4 [Cterm + Cterm]</td>
 
-
    <td>Two CpxR CDS, each C terminus attached to a moiety of IFP</td>
 
-
    <td>Characterize CpxR dimerization</td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486009</td>
 
-
    <td>CxpR & Split IFP1.4 [Nterm + Nterm]</td>
 
-
    <td>Two CpxR CDS, each N terminus attached to a moiety of IFP</td>
 
-
    <td>Characterize CpxR dimerization</td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486010</td>
 
-
    <td>CxpR & Split IFP1.4 [Nterm + Cterm]</td>
 
-
    <td>Two CpxR CDS, each attached to a moiety of IFP</td>
 
-
    <td>Characterize CpxR dimerization</td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486011</td>
 
-
    <td>CxpR & Split IFP1.4 [Cterm + Nterm]</td>
 
-
    <td>Two CpxR CDS, each attached to a moiety of IFP</td>
 
-
    <td>Characterize CpxR dimerization</td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486012</td>
 
-
    <td>CpxR + IFP[1]</td>
 
-
    <td>CpxR with the Nterm moiety of IFP attached at its C terminus</td>
 
-
    <td>Intermediate & control</td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486013</td>
 
-
    <td>CpxR + IFP[2]</td>
 
-
    <td>CpxR with the Cterm moiety of IFP attached at its C terminus</td>
 
-
    <td>Intermediate & control</td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486014</td>
 
-
    <td>IFP[1] + CpxR</td>
 
-
    <td>CpxR with the Nterm moiety of IFP attached at its N terminus</td>
 
-
    <td>Intermediate & control</td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486015</td>
 
-
    <td>IFP[2] + CpxR</td>
 
-
    <td>CpxR with the Cterm moiety of IFP attached at its N terminus</td>
 
-
    <td>Intermediate & control</td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486016</td>
 
-
    <td>fLuc[1]</td>
 
-
    <td>N terminus moiety of the firefly luciferase</td>
 
-
    <td> </td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486017</td>
 
-
    <td>fLuc[2]</td>
 
-
    <td>C terminus moiety of the firefly luciferase</td>
 
-
    <td> </td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486018</td>
 
-
    <td>PAra + fLuc[1] + fLuc[2]</td>
 
-
    <td>Split firefly luciferase under arabinose promoter</td>
 
-
    <td>Control</td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486019</td>
 
-
    <td>rLuc[1]</td>
 
-
    <td>C terminus moiety of the renilla luciferase</td>
 
-
    <td> </td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486020</td>
 
-
    <td>rLuc[2]</td>
 
-
    <td>N terminus moiety of the renilla luciferase</td>
 
-
    <td> </td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486021</td>
 
-
    <td>PAra + rLuc[1] + rLuc[2]</td>
 
-
    <td>Split renilla luciferase under arabinose promoter</td>
 
-
    <td>Control</td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486022</td>
 
-
    <td>rLuc</td>
 
-
    <td>Full renilla luciferase</td>
 
-
    <td>Control</td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
<tr>
 
-
    <td class="biobrick_name">BBa_K1486023</td>
 
-
    <td>Yeast sfGFP</td>
 
-
    <td>Superfolder GFP for yeast cells</td>
 
-
    <td>Reporter</td>
 
-
    <td>Yeast</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486024</td>
 
-
    <td>Kan</td>
 
-
    <td>Yeast kanamycin resistance gene</td>
 
-
    <td>Selection marker</td>
 
-
    <td>Yeast</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486025</td>
 
-
    <td>ADH1 terminator</td>
 
-
    <td>Terminator</td>
 
-
    <td> </td>
 
-
    <td>Yeast</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486026</td>
 
-
    <td>Yeast sfGFP + Kan</td>
 
-
    <td>Yeast sfGFP attached to the yeast kanamycin resistance gene</td>
 
-
    <td>Control the expression of pbs2</td>
 
-
    <td>Yeast</td>
 
-
  </tr>
 
-
<tr>
 
-
    <td class="biobrick_name">BBa_K1486027</td>
 
-
    <td>rLuc + Kan</td>
 
-
    <td>Renilla luciferase attached to the kanamycin resistance gene</td>
 
-
    <td> </td>
 
-
    <td>Yeast</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486028</td>
 
-
    <td>Yeast sfGFP[1]</td>
 
-
    <td>N terminal moiety of split yeast sfGFP</td>
 
-
    <td> </td>
 
-
    <td>Yeast</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486029</td>
 
-
    <td>sfGFP[1] + kan</td>
 
-
    <td>Nterm moiety of split yeast sfGFP attached to yeast kanamycin resistance gene</td>
 
-
    <td> </td>
 
-
    <td>Yeast</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486030</td>
 
-
    <td>rLuc[1] + kan</td>
 
-
    <td>Nterm moiety of split renilla luciferase attached to yeast kanamycin resistance gene</td>
 
-
    <td> </td>
 
-
    <td>Yeast</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486031</td>
 
-
    <td>Ura</td>
 
-
    <td>CDS for Uracil (yeast selective purposes)</td>
 
-
    <td>Confer resistance to Uracil-deprived medium</td>
 
-
    <td>Yeast</td>
 
-
  </tr>
 
-
<tr>
 
-
    <td class="biobrick_name">BBa_K1486032</td>
 
-
    <td>Yeast sfGFP + Ura</td>
 
-
    <td>Yeast sfGFP attached to the Uracil CDS</td>
 
-
    <td>Control the expression of hog1</td>
 
-
    <td>Yeast</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486033</td>
 
-
    <td>rLuc + Ura</td>
 
-
    <td>Renilla luciferase attached to the Uracil CDS</td>
 
-
    <td>Control the expression of hog1</td>
 
-
    <td>Yeast</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486034</td>
 
-
    <td>yeast sfGFP[2]</td>
 
-
    <td>C terminal moiety of split the yeast sfGFP</td>
 
-
    <td> </td>
 
-
    <td>Yeast</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486035</td>
 
-
    <td>yeast sfGFP[2] + Ura</td>
 
-
    <td>Cterm moiety of split yeast sfGFP attached to the Uracil CDS</td>
 
-
    <td> </td>
 
-
    <td>Yeast</td>
 
-
  </tr>
 
-
<tr>
 
-
    <td class="biobrick_name">BBa_K1486036</td>
 
-
    <td>rLuc[2] + Ura</td>
 
-
    <td>Cterm moiety of split renilla luciferase attached to the Uracil CDS</td>
 
-
    <td> </td>
 
-
    <td>Yeast</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486037</td>
 
-
    <td>linker</td>
 
-
    <td>Attaches two proteins together</td>
 
-
    <td> </td>
 
-
    <td>Yeast</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486038</td>
 
-
    <td>sfGFP[1]</td>
 
-
    <td>N terminus moiety of split superfolder GFP</td>
 
-
    <td> </td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486039</td>
 
-
    <td>sfGFP[2]</td>
 
-
    <td>C terminus moiety of split superfolder GFP</td>
 
-
    <td> </td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486040</td>
 
-
    <td>sfGFP[1] + CpxR</td>
 
-
    <td>N terminus moiety of split sfGFP attached to CpxR</td>
 
-
    <td> </td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486041</td>
 
-
    <td>sfGFP[2] + CpxR</td>
 
-
    <td>C terminus moiety of split sfGFP attached to CpxR</td>
 
-
    <td> </td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486042</td>
 
-
    <td>LZip</td>
 
-
    <td>Monomer of leucine zipper TF</td>
 
-
    <td> </td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486043</td>
 
-
    <td>LZip + split rLuc</td>
 
-
    <td>Two Leucine Zipper monomers, each attached to a different split rLuc moiety</td>
 
-
    <td>Control for split rLuc assays</td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486044</td>
 
-
    <td>mut IFP[1]</td>
 
-
    <td>Biobrick-compatible IFP[1]</td>
 
-
    <td> </td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486045</td>
 
-
    <td>mut IFP[2]</td>
 
-
    <td>Biobrick-compatible IFP[2]</td>
 
-
    <td> </td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486046</td>
 
-
    <td>CpxR promoter FW</td>
 
-
    <td>CpxR binding-region in forward direction</td>
 
-
    <td> </td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486047</td>
 
-
    <td>CpxR promoter RV</td>
 
-
    <td>CpxR binding-region in reverse direction</td>
 
-
    <td> </td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486048</td>
 
-
    <td>CpxR reporter</td>
 
-
    <td>Calgary's CpxR reporter repaired (sequence was missing)</td>
 
-
    <td>To see when CpxR is active</td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486049</td>
 
-
    <td>CpxR promoter FW + RFP</td>
 
-
    <td>Reporter of CpxR</td>
 
-
    <td>Test the direction of the complete CpxR promoter</td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486050</td>
 
-
    <td>CpxR promoter RV + RFP</td>
 
-
    <td>Reporter of CpxR</td>
 
-
    <td>Test the direction of the complete CpxR promoter</td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486052</td>
 
-
    <td>Spacer</td>
 
-
    <td>40 bases placed between constructs</td>
 
-
    <td>Separate two constructs in the same plasmid</td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486053</td>
 
-
    <td>Linker</td>
 
-
    <td>10 amino-acid linker</td>
 
-
    <td>Attach CheY/Z to split luciferases</td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486054</td>
 
-
    <td>CheY/CheZ rLuc</td>
 
-
    <td>CheY and CheZ, each attached to a moiety of split renilla luciferase</td>
 
-
    <td>Positive control for the split rLuc</td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486055</td>
 
-
    <td>CheY/CheZ fLuc</td>
 
-
    <td>CheY and CheZ, each attached to a moiety of split firefly luciferase</td>
 
-
    <td>Positive control for the split fLuc</td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486056</td>
 
-
    <td>CxpR & Split mut IFP1.4 [Cterm + Cterm]</td>
 
-
    <td>Two CpxR CDS, each C terminus attached to a moiety of the biobrick-compatible IFP</td>
 
-
    <td>Characterize CpxR dimerization</td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
</table>
 
-
</section>
+
<p>The major benefits of using microfluidic chips are:</p>
 +
<ul>
 +
<li>Low volume required (microliter range)</li>
 +
<li>High-throughput</li>
 +
<li>High precision and sensitive detection</li>
 +
<li>Cheap</li>
 +
<li>Wide range of applications</li>
 +
<li>Safe, enclosed environment (for more information go to the safety page)</li>
 +
</ul>
-
<br /><br />
 
 +
<p>Some examples of microfluidic experiments:</p>
 +
<ul>
 +
<li>Transcription factors – DNA interactions</li>
 +
<li>Protein – protein interactions</li>
 +
<li>On-chip gene synthesis: protein expression from coding DNA</li>
 +
<li>On-chip chemostat chambers: can be used to trace the fate of a single bacterium or to grow bacteria/yeast</li>
 +
<li>Antibody characterisation</li>
 +
</ul>
-
<section id="microfluidics">
+
<h3>How does it work ?</h3>
-
<h3 class="section-heading">Microfluidics parts (chips created)</h3>
+
-
<p class="lead">
+
-
Our team designed and made 4 microfluidic chips. At the beginning, we also used the <a target="_blank" href="http://link.springer.com/protocol/10.1007%2F978-1-61779-292-2_6">MITOMI chip</a>.</p>
+
-
<p class="lead">When designing the chips, the team took into account the future users and the current iGEM classification of parts. We considered it best to construct our chips as composite microfluidic parts, so their sub-parts could be used and combined in multiple ways. The flow and control layers can be separated and reused, as well as all the basic structures (chamber + connecting channel), nodes, array parts,...</p>
+
 +
<img src="https://static.igem.org/mediawiki/2014/0/03/Chip_sketch.png" alt="Chip sketch" class="cntr" width="100%" />
-
<!-- send all lines here: https://2014.igem.org/Team:EPF_Lausanne/Microfluidics/Designing -->
+
<br />
-
<table class="table table-striped table-hover" id="chips_list">
+
<br />
-
  <tr>
+
<br />
-
    <th>Name</th>
+
<ul>
-
    <th>Main Function</th>
+
<li>a. Disassembled view of a microfluidic chip showing all the different components and the region where bacteria/yeasts are located</li>
-
  </tr>
+
<li>b. Cross section of the chip showing how a valve works: when pressure is applied in the control channel, the ceiling of the flow layer is pushed against the glass slide, which closes the flow channel</li>
-
  <tr>
+
<li>c. When pressure is retrieved, the ceiling elevates again, which opens the flow channel</li>
-
    <td>SmashColi</td>
+
</ul>
-
    <td>To be able to separate the chip in 4 different compartments and apply 4 different pressures on each row of chambers.</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td>BioPad</td>
+
-
    <td>A large and simple microfluidic chip containing 9600 chambers in which the cells are contained in. Each chamber acts as a pixel for the BioPad project.</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td>SafetyColi</td>
+
-
    <td>As a result of our Safety page, we decided to create a chip that is able to seal the bacteria in the chip, preventing them to leave the chip.</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td>FilterColi</td>
+
-
    <td>To successfully immerse cells in a certain solution, this chip was designed to flow in the new medium in the chambers instead of doing it by diffusion.</td>
+
-
  </tr>
+
-
</table>
+
-
</section>
+
 +
<br />
 +
<br />
-
<br /><br />
+
<p>A standard microfluidic chip is a grid of interconnected channels and chambers. It is usually composed of one or two PDMS layers placed on a glass slide. In our case we used two layers, the so called flow layer and control layer. The bacteria are enclosed between the flow layer and the glass slide. By its shape, the flow layer is responsible for the patterns of the chip. In our case, the pattern consists of several parallel rows of chambers. The control layer comes on top of the flow layer and allows to open or close valves by pressing or releasing water in the corresponding channels. Thus a mechanical pressure can be applied from the control layer on the flow layer, enabling a precise compartmentalization of the chip.</p>
-
</div>
+
-
</div>
+
 +
<p>Once the chip is ready to be used, small tubings of 0.35mm diameter are plugged in the inlets of the chip (see gif below). The tubings that are plugged in the control inlets are loaded with water and enable the opening or closing of valves. The tubings that are plugged into the flow inlets are used to flow bacteria/yeast or various solutions in the chambers. </p>
 +
 +
 +
<p>Picture of the MITOMI Chip and our Smash-Coli chip</p>
 +
 +
<div class="row">
 +
<div class="col col-md-6 cntr">
 +
    <div class="thumbnail">
 +
<a href="https://static.igem.org/mediawiki/2014/c/c6/Mitomi_che.PNG" data-lightbox="image-1" data-title="Mitomi"><img src="https://static.igem.org/mediawiki/2014/c/c6/Mitomi_che.PNG" alt="Mitomi" width="200" /></a>
 +
      <div class="caption">
 +
        <p>MITOMI chip filled with bacteria expressing GFP</p>
 +
      </div>
 +
    </div>
 +
</div>
 +
<div class="col col-md-6 cntr">
 +
    <div class="thumbnail">
 +
<a href="https://static.igem.org/mediawiki/2014/5/51/Killcoli.PNG" data-lightbox="image-1" data-title="Smash-coli"><img src="https://static.igem.org/mediawiki/2014/5/51/Killcoli.PNG" alt="Killcoli" width="200" /></a>
 +
      <div class="caption">
 +
        <p>“Smash-coli” chip, here with expression of RFP</p>
 +
      </div>
 +
    </div>
</div>
</div>
</div>
</div>
-
<div class="col col-md-3">
+
 
-
<nav id="affix-nav" class="sidebar hidden-sm hidden-xs">
+
 
-
    <ul class="nav sidenav box" data-spy="affix" data-offset-top="200" data-offset-bottom="400">
+
 
-
        <li class="active"><a href="#dna">DNA Parts</a></li>
+
<ul  class="list-unstyled">
-
        <li><a href="#microfluidics">Microfluidics Parts</a></li>
+
 
-
    </ul>
+
  <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics/Designing">Designing a chip</a></li>
-
</nav>
+
      <li class="dropdown">
 +
            <a href="#" class="dropdown-toggle" data-toggle="dropdown">
 +
                Making a chip <b class="caret"></b>
 +
            </a>
 +
            <ul class="dropdown-menu">
 +
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics/Making/PartI">Part I</a></li>
 +
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics/Making/PartII">Part II</a></li>
 +
            </ul>
 +
        </li>
 +
</ul>
 +
 
 +
 
</div>
</div>
</div>
</div>
-
</div>
 
-
<!-- END ABSTRACT -->
 
-
<script type="text/javascript">
+
 
-
    $(document).ready(function() {
+
 
-
      $('body').scrollspy({ target: '#affix-nav' });
+
<!-- END ABSTRACT -->
-
      $('#biobricks_list tr').click(function (e) {
+
-
        text = $(this).children('td.biobrick_name').first().text();
+
-
        if (text != '') {
+
-
          return window.open('http://parts.igem.org/Part:' + text, '_blank');
+
-
        }
+
-
      });
+
-
    });
+
-
</script>
+
</html>
</html>
{{CSS/EPFL_bottom}}
{{CSS/EPFL_bottom}}

Revision as of 16:44, 14 October 2014

Microfluidics


Microfluidics and synthetic biology

Microfluidics is an efficient tool for biological experiments. Its fields of applications go from gene regulatory network analysis to antibody screening. Several laboratory techniques can be adapted to these devices, such as DNA amplification, protein separation or cell sorting.

The chips are generally fabricated from elastomeric materials, such as polydimethylsiloxane (PDMS) and contain micron-sized channels with integrated micromechanical tools (mixer, valve, pump…). This allows massive parallelisation as well as great modularity of the experiments.

Most soluble reagents can be used, including DNA, proteins and small molecule libraries. As we focused our work on E.coli and S. cerevisiae, most of our experiments included culture of these species on-chip during our experiments. We first used the MITOMI chip which was invented in the lab of our supervisor Prof. Maerkl. We then designed new chips that were more adapted to stress the cells by pressure, as needed to implement the final “BioPad”.

The major benefits of using microfluidic chips are:

  • Low volume required (microliter range)
  • High-throughput
  • High precision and sensitive detection
  • Cheap
  • Wide range of applications
  • Safe, enclosed environment (for more information go to the safety page)

Some examples of microfluidic experiments:

  • Transcription factors – DNA interactions
  • Protein – protein interactions
  • On-chip gene synthesis: protein expression from coding DNA
  • On-chip chemostat chambers: can be used to trace the fate of a single bacterium or to grow bacteria/yeast
  • Antibody characterisation

How does it work ?

Chip sketch


  • a. Disassembled view of a microfluidic chip showing all the different components and the region where bacteria/yeasts are located
  • b. Cross section of the chip showing how a valve works: when pressure is applied in the control channel, the ceiling of the flow layer is pushed against the glass slide, which closes the flow channel
  • c. When pressure is retrieved, the ceiling elevates again, which opens the flow channel


A standard microfluidic chip is a grid of interconnected channels and chambers. It is usually composed of one or two PDMS layers placed on a glass slide. In our case we used two layers, the so called flow layer and control layer. The bacteria are enclosed between the flow layer and the glass slide. By its shape, the flow layer is responsible for the patterns of the chip. In our case, the pattern consists of several parallel rows of chambers. The control layer comes on top of the flow layer and allows to open or close valves by pressing or releasing water in the corresponding channels. Thus a mechanical pressure can be applied from the control layer on the flow layer, enabling a precise compartmentalization of the chip.

Once the chip is ready to be used, small tubings of 0.35mm diameter are plugged in the inlets of the chip (see gif below). The tubings that are plugged in the control inlets are loaded with water and enable the opening or closing of valves. The tubings that are plugged into the flow inlets are used to flow bacteria/yeast or various solutions in the chambers.

Picture of the MITOMI Chip and our Smash-Coli chip

Mitomi

MITOMI chip filled with bacteria expressing GFP

Killcoli

“Smash-coli” chip, here with expression of RFP

Sponsors