Team:HokkaidoU Japan/Projects/H Stem

From 2014.igem.org

(Difference between revisions)
Line 34: Line 34:
<meta http-equiv="X-UA-Compatible" CONTENT="IE=EmulateIE7"/>
<meta http-equiv="X-UA-Compatible" CONTENT="IE=EmulateIE7"/>
-
<div id="text">
+
<div id="text"><!--モデリングで隠せるのはここから-->
\[ X+Y \overset{k_{\rm unbind}}{\underset{k_{\rm bind}}{\rightleftharpoons}} Z \]
\[ X+Y \overset{k_{\rm unbind}}{\underset{k_{\rm bind}}{\rightleftharpoons}} Z \]
Line 58: Line 58:
-
     </div>
+
 
 +
     </div><!--ここまで!!!!!!-->
   </div>
   </div>
</div><!--toggle-->
</div><!--toggle-->
Line 75: Line 76:
<!--end footer-->
<!--end footer-->
-
  <div class="wrapper">
 
-
 
-
    <div id="hokkaidou-contents">
 
-
 
-
 
-
<h1 id="Overview">Overview</h1>
 
-
<h1 id="How_To_Use">How To Use</h1>
 
-
<h1 id="Modelling">Modelling</h1>
 
-
 
-
<div id="button">
 
-
Detail
 
-
</div>
 
-
 
-
 
-
<meta http-equiv="X-UA-Compatible" CONTENT="IE=EmulateIE7"/>
 
-
<div id="text"><!--モデリングで隠せるのはここから-->
 
-
 
-
\[ X+Y \overset{k_{\rm unbind}}{\underset{k_{\rm bind}}{\rightleftharpoons}} Z \]
 
-
 
-
 
-
 
-
\begin{cases}
 
-
  \dot{x}=a-bx-k_{\rm bind}xy+k_{\rm unbind}z & \\
 
-
  \dot{y}=1-y-k_{\rm bind}xy+k_{\rm unbind}z & \\
 
-
  \dot{z}=k_{\rm bind}xy-k_{\rm unbind}z-cz &
 
-
\end{cases}
 
-
 
-
 
-
\[ y=\frac{1}{2} \biggl\{ \sqrt{ \bigl( a-1+\frac{b}{\gamma} \bigl)^2 +4 \frac{b}{\gamma}} - \Bigl( a-1+\frac{b}{\gamma} \Bigl) \biggl\}  \]
 
-
 
-
\[ \gamma = \frac{k_{\rm bind}c}{k_{\rm unbind}+c} \]
 
-
 
-
 
-
 
-
 
-
 
-
 
-
 
-
 
-
 
-
    </div><!--ここまで!!!!!!-->
 
-
  </div>
 
-
</div><!--toggle-->
 
</div><!--background-->
</div><!--background-->
</html>
</html>

Revision as of 16:11, 13 October 2014

Overview

How To Use

Modelling

Detail
\[ X+Y \overset{k_{\rm unbind}}{\underset{k_{\rm bind}}{\rightleftharpoons}} Z \] \begin{cases} \dot{x}=a-bx-k_{\rm bind}xy+k_{\rm unbind}z & \\ \dot{y}=1-y-k_{\rm bind}xy+k_{\rm unbind}z & \\ \dot{z}=k_{\rm bind}xy-k_{\rm unbind}z-cz & \end{cases} \[ y=\frac{1}{2} \biggl\{ \sqrt{ \bigl( a-1+\frac{b}{\gamma} \bigl)^2 +4 \frac{b}{\gamma}} - \Bigl( a-1+\frac{b}{\gamma} \Bigl) \biggl\}  \] \[ \gamma = \frac{k_{\rm bind}c}{k_{\rm unbind}+c} \]