Team:EPF Lausanne

From 2014.igem.org

(Difference between revisions)
Line 132: Line 132:
<div class="clearfix"></div>
<div class="clearfix"></div>
-
<!--  
+
<!-- COMMENT TEXT
<h2>Why a BioPad?</h2>
<h2>Why a BioPad?</h2>
Line 148: Line 148:
<!--Moreover, our work on the Cpx pathway will allow future iGEM teams to use other members of the OmpR/PhoB subfamily as well as other two-component regulatory systems in new ways. -->
<!--Moreover, our work on the Cpx pathway will allow future iGEM teams to use other members of the OmpR/PhoB subfamily as well as other two-component regulatory systems in new ways. -->
-
 
+
<!--
<br /><br />
<br /><br />
As for applied sciences, the BioPad could be used to deliver a cheap, fast, efficient, and accurate antibiotic screening system allowing researchers to easily quantify the effects of antibiotics on gram-negative bacteria. The BioPad project could also be the source of an "antibiotic complement" drug increasing the efficiency of pre-existing antibiotics. Moreover, the Biopad could provide a new approach to studying genes by allowing researchers to examine the relationship between genes and their corresponding activating signals. To learn more about the applications of our project click <a target="_blank" href="https://2014.igem.org/Team:EPF_Lausanne/Applications">here</a>.</p>
As for applied sciences, the BioPad could be used to deliver a cheap, fast, efficient, and accurate antibiotic screening system allowing researchers to easily quantify the effects of antibiotics on gram-negative bacteria. The BioPad project could also be the source of an "antibiotic complement" drug increasing the efficiency of pre-existing antibiotics. Moreover, the Biopad could provide a new approach to studying genes by allowing researchers to examine the relationship between genes and their corresponding activating signals. To learn more about the applications of our project click <a target="_blank" href="https://2014.igem.org/Team:EPF_Lausanne/Applications">here</a>.</p>

Revision as of 10:06, 13 October 2014

Our project in a nutshell


Summary of our project


EPFL_interaction_IFP_cartoon

The 2014 EPFL iGEM team has been working on showing that biologically engineered organisms can detect and process signals quickly and efficiently. With this in mind, our team brought forward a novel idea: combining protein complementation techniques with biosensors to achieve fast spatiotemporal analysis of cell response to stimuli.

As a proof-of-concept, we aimed to develop the first BioPad: a biological trackpad made of a microfluidic chip, touch-responsive organisms and a signal detector. To make our organisms touch-sensitive, we engineering two stress-related pathways in E.Coli and S.Cerevisiae. In E.Coli, we engineered the Cpx Pathway - a two-component regulatory system responsive to envelope stress. In S.Cerevisiae, we modified the HOG Pathway - a MAPKK pathway responsive to osmotic stress. To learn more about the various components of our project, check out our overview section. If you are a judge, you might also be interested in our data page.

Yeast

Yeast

Discover how we took advantage of the HOG osmotic response pathway to create touch sensitive yeast strains! Learn more on how we implemented a split GFP and a split Luciferase in S.Cerevisiae leading to light emission when pressure is applied.

I.T

I like turtles.

Human practice

Human practice

Are we human, or are we dancers ?

Safety

Safety

work in progress

MEET OUR TEAM

We are a group of 14 students from the faculties of Life, Biomechanical, and Computer Sciences, and are supervised by 2 EPFL professors, 1 Lecturer and 5 PhD students.

the team's students

Sponsors