Team:SCUT/Model/Overview
From 2014.igem.org
Line 19: | Line 19: | ||
<img src="https://static.igem.org/mediawiki/2014/d/dc/1-01.png"> | <img src="https://static.igem.org/mediawiki/2014/d/dc/1-01.png"> | ||
</div> | </div> | ||
- | <div class="navibody navibody1" onclick="scroll_1()" | + | <div class="navibody navibody1"> |
- | + | <p onclick="scroll_1()">Background</p> | |
- | <p>Rubisco simulation</p> | + | <p onclick="scroll_2()">Rubisco simulation</p> |
- | <p>N-butanol simulation</p> | + | <p onclick="scroll_3()">N-butanol simulation</p> |
</div> | </div> | ||
<div class="navihead navihead2"> | <div class="navihead navihead2"> | ||
<img src="https://static.igem.org/mediawiki/2014/0/0c/2-01.png"> | <img src="https://static.igem.org/mediawiki/2014/0/0c/2-01.png"> | ||
</div> | </div> | ||
- | <div class="navibody navibody2 | + | <div class="navibody navibody2"> |
<p>Individual part</p> | <p>Individual part</p> | ||
<p>Combine part</p> | <p>Combine part</p> | ||
Line 36: | Line 36: | ||
<img src="https://static.igem.org/mediawiki/2014/1/16/3-01.png"> | <img src="https://static.igem.org/mediawiki/2014/1/16/3-01.png"> | ||
</div> | </div> | ||
- | <div class="navibody navibody3 | + | <div class="navibody navibody3"> |
<p>Background</p> | <p>Background</p> | ||
<p>Rubisco simulation</p> | <p>Rubisco simulation</p> | ||
Line 44: | Line 44: | ||
<img src="https://static.igem.org/mediawiki/2014/a/ab/4-01.png"> | <img src="https://static.igem.org/mediawiki/2014/a/ab/4-01.png"> | ||
</div> | </div> | ||
- | <div class="navibody navibody4 | + | <div class="navibody navibody4"> |
<p>Background</p> | <p>Background</p> | ||
<p>Rubisco simulation</p> | <p>Rubisco simulation</p> | ||
Line 52: | Line 52: | ||
<img src="https://static.igem.org/mediawiki/2014/7/7f/5-01.png"> | <img src="https://static.igem.org/mediawiki/2014/7/7f/5-01.png"> | ||
</div> | </div> | ||
- | <div class="navibody navibody5 | + | <div class="navibody navibody5"> |
<p>Background</p> | <p>Background</p> | ||
<p>Rubisco simulation</p> | <p>Rubisco simulation</p> | ||
Line 85: | Line 85: | ||
<div id="overview"> | <div id="overview"> | ||
- | <div class="mainbody mainbody1"> | + | <div class="mainbody mainbody1" id="label_1"> |
<p class="atop"> | <p class="atop"> | ||
- | <span | + | <span>Background</span> |
</p> | </p> | ||
<p class="first"> | <p class="first"> | ||
Line 93: | Line 93: | ||
</p> | </p> | ||
</div> | </div> | ||
- | <div class="mainbody"> | + | <div class="mainbody" id="label_2"> |
<p class="atop"> | <p class="atop"> | ||
<span>Rubisco part</span> | <span>Rubisco part</span> | ||
</p> | </p> | ||
- | <p | + | <p> |
For the Rubisco part, we use<span> ODEs (ordinary differential equations)</span> to <span>simulate the pathway</span> and proof <span>the function of Rubisco</span>. With the help of <span>parameter sweep</span>, we find out the <span>optimal reaction rate ratio</span> of the reactions involved in the scaffold. By the way ,we also use <span>the“bottom-up” strategy</span>, the most famous principle of Computer Science, to guide our work. | For the Rubisco part, we use<span> ODEs (ordinary differential equations)</span> to <span>simulate the pathway</span> and proof <span>the function of Rubisco</span>. With the help of <span>parameter sweep</span>, we find out the <span>optimal reaction rate ratio</span> of the reactions involved in the scaffold. By the way ,we also use <span>the“bottom-up” strategy</span>, the most famous principle of Computer Science, to guide our work. | ||
</p> | </p> | ||
</div> | </div> | ||
- | <div class="mainbody"> | + | <div class="mainbody" id="label_3"> |
<p class="atop"> | <p class="atop"> | ||
<span>N-butanol part</span> | <span>N-butanol part</span> | ||
</p> | </p> | ||
- | <p | + | <p> |
For the N-butanol part, in order to simulate the n-butanol biosynthetic pathway in Saccharomyces cerevisiae mitochondria, we construct a model by using <span>Michealis-Menton kinetics</span> and <span>ODEs (ordinary differential equations)</span>. The model shows that, with high concentrations of NADH and NADPH in mitochondria, the production of n-butanol will be greatly improved. | For the N-butanol part, in order to simulate the n-butanol biosynthetic pathway in Saccharomyces cerevisiae mitochondria, we construct a model by using <span>Michealis-Menton kinetics</span> and <span>ODEs (ordinary differential equations)</span>. The model shows that, with high concentrations of NADH and NADPH in mitochondria, the production of n-butanol will be greatly improved. | ||
</p> | </p> |
Revision as of 09:36, 7 October 2014
Background
The design and redesign is one of the hallmarks of synthesis biology. In order to test the consistence of the pathway we designed and the function of scaffold we used, modeling is the most powerful tool to be used before doing experiments.
Rubisco part
For the Rubisco part, we use ODEs (ordinary differential equations) to simulate the pathway and proof the function of Rubisco. With the help of parameter sweep, we find out the optimal reaction rate ratio of the reactions involved in the scaffold. By the way ,we also use the“bottom-up” strategy, the most famous principle of Computer Science, to guide our work.
N-butanol part
For the N-butanol part, in order to simulate the n-butanol biosynthetic pathway in Saccharomyces cerevisiae mitochondria, we construct a model by using Michealis-Menton kinetics and ODEs (ordinary differential equations). The model shows that, with high concentrations of NADH and NADPH in mitochondria, the production of n-butanol will be greatly improved.
Besides, all of our programs run on the MATLAB.