Team:Oxford/biosensor realisation
From 2014.igem.org
(Difference between revisions)
MatthewBooth (Talk | contribs) |
Olivervince (Talk | contribs) |
||
Line 139: | Line 139: | ||
<div class="white_news_block"> | <div class="white_news_block"> | ||
+ | <h1>Light detecting circuit construction</h1> | ||
+ | After trying several different configurations for the initial photodiode setup, I settled for the one shown in the circuit diagram because it was the only one I could make work. After that the construction continued fairly easily, attaching the wires to circuit was probably the most time consuming thing. | ||
+ | <br><br> | ||
+ | In the beginning I was using a XXX photodiode, it was the single remaining photodiode left in the department. Even though it had a desirable absorption spectrum, it was fairly old and very temperamental, I often had to move the diode about and switch it on and off several times to make it work in the same conditions. So after searching on the internet and looking and spectral data, I ordered some Bpw21 photodiodes instead, which had a better absorption spectrum and were much more reliable. I had to change some of the gains, by changing resistor values, as the initial voltage produced by the Bpw21 was much larger and caused saturation on the original circuit. | ||
+ | <br><br> | ||
+ | I chose the values for the voltages, OFFSET and THRESHOLD, by examining the range of voltages the circuit moved through, with changing light levels, and selecting appropriate values which lied in the middle of the range. | ||
+ | <br><br> | ||
+ | My first round of experiments was conducted on the 5th floor of the Thom Building with the photodiode facing out of the window; I changed the light levels by moving my hand over it. This setup was simple but unrealistic, as our final design would be inside a black box and I was I told that the light emitted from GFP would be a low level. I used this design to start with to ensure the circuitry worked correctly. | ||
+ | <br><br> | ||
+ | On my second experiment I moved the photodiode into a cardboard box and had it facing a green LED, I manually switched on and off the LED to get the varying light levels desired. I had to recalibrate all my resistor values as they were no longer appropriate. The light levels when ‘dark’ were much lower as the cardboard box blocked out a lot more light than my hand did. So too were the light levels for ‘light’ as the green LED emitted much less light than the sun coming into the building. Although the change in voltage between light and dark was a lot smaller for this setup, it was fixed and did not depend on what time of day, or what the weather was outside. It was more binary and so after recalculating values it was a lot more reliable. Adding a blue LED in the background produced a different light level again, but this was easily counteracted by changing the voltage OFFSET again. The background blue LED was used here to approximate some of the blue light which would leak through the filter in the real circuit. | ||
+ | <br><br> | ||
+ | Although I tried to get as close to our real system as possible; there were still some differences. I would have used multiple blue LEDs to illuminate the SFGFP to get as much green light as possible. A filter would have been put in place between the light emitters (blue LEDs and bacterium/green LEDs) and the light detectors (photodiodes) to reduce the amount of unwanted blue light. Finally multiple photodiodes would have been used to increase the amplitude of the signal. These changes were not implemented simply because there was still a readable voltage signal from one LED and one photodiode. Whilst the geometry of the circuit on the bread board meant that inputting a filter would be impractical and manually offsetting the voltage had already rectified the blue LED problem. | ||
Revision as of 10:00, 30 September 2014