Team:UCL/about

From 2014.igem.org

(Difference between revisions)
Line 35: Line 35:
                 <h4>The Solution: Goodbye AzoDyes, UCL iGEM Team 2014</h4>
                 <h4>The Solution: Goodbye AzoDyes, UCL iGEM Team 2014</h4>
                 <p><img class="alignleft" src="https://static.igem.org/mediawiki/2014/3/36/Decolorization_2.jpg" alt=" ">Our iGEM project 2014 will work towards controllably degrading and detoxifying the excess azo dye effluent at the source - the textile factories - and filtering the different toxic breakdown products elsewhere, before they ever reach the water systems. Our aim is to then convert these products into innoculous, and potentially useful, chemicals that can be used in other processes. In effect, we want to recycle and re-use the excess azo dyes. </p>
                 <p><img class="alignleft" src="https://static.igem.org/mediawiki/2014/3/36/Decolorization_2.jpg" alt=" ">Our iGEM project 2014 will work towards controllably degrading and detoxifying the excess azo dye effluent at the source - the textile factories - and filtering the different toxic breakdown products elsewhere, before they ever reach the water systems. Our aim is to then convert these products into innoculous, and potentially useful, chemicals that can be used in other processes. In effect, we want to recycle and re-use the excess azo dyes. </p>
 +
 +
                <h4>Using Synthetic Biology</h4>
 +
                <p>To do this will involve creating an enhanced azo dye decolourising organism by introducing the genes for three enzymes related to the degradation of these dyes: azoreductase, laccase, and lignin peroxidase into a host <i>E.coli</i> cell. In an industrial context, these three enzymes would work sequentially in a bioreactor of changing conditions. First, azoreductase will cleave the azo bond (N=N) by a double reduction using NADPH as a cofactor; this will produce a series of highly toxic aromatic amines. These compounds will be then oxidised by incorporation of lignin peroxidase and laccase, completing decolourisation and decreasing toxicity levels to the point that the final products of the process are less toxic than the intact dyes themselves. The complementary action of azoreductase and lignin peroxidase will be studied in order to find out the best possible approach of sequential reaction, and this core degradation module will be extrapolated to other areas such as BioArt projects and work on algal-bacterial symbiosis, trying to set up the foundations for a synthetic ecology.</p>
 +
                <p><figure> <img src="https://static.igem.org/mediawiki/2014/f/f2/Azo_reductase.jpg" alt="" class="aligncenter">
 +
                <figcaption></figcaption>
 +
                </figure></p>
 +
             </div>
             </div>
             <!-- close span9 primary-column-->
             <!-- close span9 primary-column-->

Revision as of 15:06, 5 September 2014

Goodbye Azo Dye : iGEM 2014 - University College London

 

About our project

Contact Us

University College London - Gower Street - London - WC1E 6BT - Biochemical Engineering Department
phone: +44 (0)20 7679 2000
email: ucligem2014@gmail.com

Follow Us

Tweets

back to top