Team:Minnesota

From 2014.igem.org

(Difference between revisions)
Line 85: Line 85:
<td width="45%"  valign="top">  
<td width="45%"  valign="top">  
-
<p> Mercury is a neurotoxic heavy metal with the ability to biomagnify, therefore it is a significant issue in public health and environmental studies worldwide. Its levels are continually on the rise due to copper, nickel, and gold mining activities, the industrial use of mercury catalysts, mercurial fungicides in agriculture, and the burning of fossil fuels. This has resulted in the pollution of many marine ecosystems and water reservoirs worldwide, the cleanup of which using current technology, is either not feasible or incredibly costly. This study describes the use of the standardized, modular design of the BioBrick(TM) systems to engineer recombinant bacteria to facilitate the biological remediation of the neurotoxin methylmercury and hazardous mercury ions from an aquatic target site into less toxic form. This synthetic microbe was incorporated in novel silica polymer cell encapsulation technology within a cost-effective, scalable water filtering column. The employment of this device could rigorously change the practices used in mercury decontamination efforts as well as pave the way for the switch to biological rather than chemical processes. Furthermore, this technology can be applied towards bioremediation and biosensing of various other heavy metals and organic toxins in the environment. </p>
+
<p> Mercury is a neurotoxic heavy metal with the ability to biomagnify, therefore it is a significant issue in public health and environmental studies worldwide. Its levels are continually on the rise due to copper, nickel, and gold mining activities, the industrial use of mercury catalysts, mercurial fungicides in agriculture, and the burning of fossil fuels. This has resulted in the pollution of many marine ecosystems and water reservoirs worldwide, the cleanup of which using current technology, is either not feasible or incredibly costly. This study describes the use of the standardized, modular design of the BioBrick(TM) systems to engineer recombinant bacteria to facilitate the biological remediation of the neurotoxin methylmercury and hazardous mercury ions from an aquatic target site into less toxic form. This synthetic microbe was incorporated in novel cell encapsulation technology within a cost-effective, scalable water filtering column. The employment of this device could rigorously change the practices used in mercury decontamination efforts as well as pave the way for the switch to biological rather than chemical processes. Furthermore, this technology can be applied towards bioremediation and biosensing of various other heavy metals and organic toxins in the environment. </p>

Revision as of 20:47, 15 August 2014


WELCOME TO iGEM 2014!

Your team has been approved and you are ready to start the iGEM season!
On this page you can document your project, introduce your team members, document your progress
and share your iGEM experience with the rest of the world!


Click here to edit this page!

Home Team Official Team Profile Project Parts Modeling Notebook Safety Attributions

Project Description

Mercury is a neurotoxic heavy metal with the ability to biomagnify, therefore it is a significant issue in public health and environmental studies worldwide. Its levels are continually on the rise due to copper, nickel, and gold mining activities, the industrial use of mercury catalysts, mercurial fungicides in agriculture, and the burning of fossil fuels. This has resulted in the pollution of many marine ecosystems and water reservoirs worldwide, the cleanup of which using current technology, is either not feasible or incredibly costly. This study describes the use of the standardized, modular design of the BioBrick(TM) systems to engineer recombinant bacteria to facilitate the biological remediation of the neurotoxin methylmercury and hazardous mercury ions from an aquatic target site into less toxic form. This synthetic microbe was incorporated in novel cell encapsulation technology within a cost-effective, scalable water filtering column. The employment of this device could rigorously change the practices used in mercury decontamination efforts as well as pave the way for the switch to biological rather than chemical processes. Furthermore, this technology can be applied towards bioremediation and biosensing of various other heavy metals and organic toxins in the environment.

There are a few wiki requirements teams must follow:

  • All pages, images and files must be hosted on the 2014.igem.org server.
  • All pages must be created under the team’s name space.
  • As part of your documentation, keep the links from the menu to the left.
  • Do not use flash in wiki code.
  • The iGEM logo should be placed on the upper part of every page and should link to 2014.igem.org.

Visit the Wiki How To page for a complete list of requirements, tips and other useful information.

Tips

We are currently working on providing teams with some easy to use design templates.
In the meantime you can also view other team wikis for inspiration! Here are some very good examples

For a full wiki list, you can visit iGEM 2013 web sites and iGEM 2012 web sites lists.

This wiki will be your team’s first interaction with the rest of the world, so here are a few tips to help you get started:

  • State your accomplishments! Tell people what you have achieved from the start.
  • Be clear about what you are doing and what you plan to do.
  • You have a global audience! Consider the different backgrounds that your users come from.
  • Make sure information is easy to find; nothing should be more than 3 clicks away.
  • Avoid using very small fonts and low contrast colors; information should be easy to read.
  • Start documenting your project as early as possible; don’t leave anything to the last minute before the Wiki Freeze. For a complete list of deadlines visit the iGEM 2013 calendar
  • Have lots of fun!