Team:Hong Kong-CUHK/Project

From 2014.igem.org

(Difference between revisions)
 
Line 82: Line 82:
<tr>
<tr>
<td width="45%"  valign="top">  
<td width="45%"  valign="top">  
-
<b style='mso-bidi-font-weight:normal'><span lang=EN-US>Methanator</span></b></span></p>
+
<p class=MsoNormal style='text-align:justify;text-justify:inter-ideograph'><b
 +
style='mso-bidi-font-weight:normal'><span lang=EN-US style='font-size:14.0pt;
 +
mso-bidi-font-size:10.0pt;line-height:115%'>Methanator<o:p></o:p></span></b></p>
 +
 
 +
<p class=MsoNormal style='text-align:justify;text-justify:inter-ideograph'><span
 +
lang=EN-US style='font-size:14.0pt;mso-bidi-font-size:10.0pt;line-height:115%'><o:p>&nbsp;</o:p></span></p>
<p class=MsoNormal style='text-align:justify;text-justify:inter-ideograph'><b
<p class=MsoNormal style='text-align:justify;text-justify:inter-ideograph'><b
Line 92: Line 97:
contribution to global warming, where one of the impacts brought to the
contribution to global warming, where one of the impacts brought to the
ecosystem is its excessive solvation into the ocean in carbonate form,
ecosystem is its excessive solvation into the ocean in carbonate form,
-
threatening marine <span class=SpellE>lifes</span> (<span class=SpellE>Baldgcchi</span>
+
threatening marine life [1]. This year we would like to utilize and recharge
-
<i style='mso-bidi-font-style:normal'>et al.</i>, 1996). This year we would
+
these abundantly available CO<sub>2</sub> by converting to methane (CH<sub>4</sub>),
-
like to utilize and recharge these abundantly available CO<sub>2</sub> by
+
an important carbon source for fuel and bio-degradable plastic production.
-
converting to methane (CH<sub>4</sub>), an important carbon source for fuel and
+
While there are naturally existing methane-generating microorganisms, the
-
bio-degradable plastic production. While there are naturally existing
+
convertion involves multi-step metabolic reactions, not to mention that they
-
methane-generating microorganisms, the <span class=SpellE>convertion</span>
+
can only survive in anaerobic environment thus diffcult to manipulate.</span></p>
-
involves multi-step metabolic reactions, not to mention that they can only
+
-
survive in anaerobic environment thus <span class=SpellE>diffcult</span> to
+
-
manipulate.</span></p>
+
<p class=MsoNormal style='text-align:justify;text-justify:inter-ideograph'><span
<p class=MsoNormal style='text-align:justify;text-justify:inter-ideograph'><span
Line 106: Line 108:
<p class=MsoNormal style='text-align:justify;text-justify:inter-ideograph'><span
<p class=MsoNormal style='text-align:justify;text-justify:inter-ideograph'><span
-
lang=EN-US>A recent research showed that a mutated form of <span class=SpellE>nitrogenase</span>
+
lang=EN-US>A recent research showed that a mutated form of nitrogenase from <i
-
from <span class=SpellE><i style='mso-bidi-font-style:normal'>Azotobacter</i></span><i
+
style='mso-bidi-font-style:normal'>Azotobacter vinelandii</i>, a
-
style='mso-bidi-font-style:normal'> <span class=SpellE>vinelandii</span></i>, a
+
nitrogen-fixing bacteria found in soil, has carbon fixation ability [2]. Yang <i
-
nitrogen-fixing bacteria found in soil, has carbon fixation ability (<span
+
style='mso-bidi-font-style:normal'>et al. </i>[3] demonstrated that by
-
class=SpellE>Seefeldt</span> <i style='mso-bidi-font-style:normal'>et al.</i>,
+
introducing 70<sup>Ala</sup> and 195<sup>Gln</sup> mutations on nitrogenase
-
2013). Yang <i style='mso-bidi-font-style:normal'>et al. </i>demonstrated that
+
alpha subunit, the nitrogenase enzyme complex reduced CO<sub>2</sub> and CO<sub>3</sub><sup>-</sup>
-
by introducing 70Ala and 195Gln mutations on <span class=SpellE>nitrogenase</span>
+
to CH<sub>4</sub> instead of converting nitrogen to ammonia. This system
-
alpha subunit, the <span class=SpellE><span class=GramE>nitrogenase</span></span>
+
provided a one-step reaction to convert CO<sub>2</sub> into CH<sub>4</sub> and
-
enzyme complex reduced CO<sub>2</sub> and CO<sub>3</sub><sup>-</sup> to CH<sub>4</sub>
+
other carbon compounds directly. However, since a large electron flux, thus
-
instead of converting nitrogen to ammonia (Yang <i style='mso-bidi-font-style:
+
energy, was wasted in producing molecular hydrogen (H<sub>2</sub>) from proton
-
normal'>et al.</i>, 2012). This system provided <span class=GramE>an</span>
+
during the reaction, we utilized a soluble hydrogenase complex from <i
-
one-step reaction to convert CO<sub>2</sub> into CH<sub>4</sub> and other
+
style='mso-bidi-font-style:normal'>Aquifex aeolicus</i> to recycle H<sub>2</sub>
-
carbon compounds directly. However, since a large electron flux, thus energy,
+
to proton. To further enhance the efficiency of carbon fixation process, we
-
was wasted in producing molecular hydrogen (H<sub>2</sub>) from proton during
+
physically linked both nitrogenase and hydrogenase complexes with SH3 and PDZ
-
the reaction, we utilized a soluble <span class=SpellE>hydrogenase</span>
+
-
complex from <span class=SpellE><i style='mso-bidi-font-style:normal'>Aquifex</i></span><i
+
-
style='mso-bidi-font-style:normal'> <span class=SpellE>aeolicus</span></i> to
+
-
recycle H<sub>2</sub> to proton. To further enhance the efficiency of carbon
+
-
fixation process, we physically linked both <span class=SpellE>nitrogenase</span>
+
-
and <span class=SpellE>hydrogenase</span> complexes with SH3 and PDZ
+
ligand-domain pairs to accelerate the H<sub>2</sub> recycling.</span></p>
ligand-domain pairs to accelerate the H<sub>2</sub> recycling.</span></p>
Line 133: Line 129:
<p class=MsoNormal style='text-align:justify;text-justify:inter-ideograph'><span
<p class=MsoNormal style='text-align:justify;text-justify:inter-ideograph'><span
lang=EN-US>To allow regulation of expression of these enzymes in <i
lang=EN-US>To allow regulation of expression of these enzymes in <i
-
style='mso-bidi-font-style:normal'>A. <span class=SpellE>vinelandii</span></i>,
+
style='mso-bidi-font-style:normal'>A. vinelandii</i>, we plan to build a T7
-
we plan to build a T7 protein expression system in <span class=GramE>this <span
+
protein expression system in this diazotrophic bacteria. Given that this
-
class=SpellE>diazotrophic</span> bacteria</span>. Given that this organism
+
organism produces more nitrogenase complex, which includes the structural gene
-
produces more <span class=SpellE>nitrogenase</span> complex in the absence of
+
nifH, in the absence of ammonia [4], we utilized its strong
-
ammonia (<span style='color:#222222;background:white;mso-highlight:white'>Hamilton
+
nitrogen-derepressible nifH promoter [4] to control T7 RNA polymerase
-
<i style='mso-bidi-font-style:normal'>et al</i>., 2011</span>)<span
+
expression. nifH promoter appeared to be stronger than its counterpart, lacUV5
-
class=GramE>,</span> we utilized its strong nitrogen-<span class=SpellE>derepressible</span>
+
promoter, in <i style='mso-bidi-font-style:normal'>E. coli </i>([5] and
-
<span class=SpellE>nifH</span> promoter (Trinity <i style='mso-bidi-font-style:
+
characterization data of iGEM Biobrick <a
-
normal'>et al.</i>, 2011) to control T7 RNA polymerase expression. <span
+
href="http://parts.igem.org/Part:BBa_K568003">K568003</a>). Our system may
-
class=SpellE><span class=GramE>nifH</span></span> promoter appeared to be
+
provide an alternative platform for protein expression, as it is compatible to
-
stronger than its counterpart, lacUV5 promoter, in <i style='mso-bidi-font-style:
+
existing T7 promoter-driven constructs. Expression of enzymes along a
-
normal'>E. coli </i>(<span class=SpellE>Curatti</span>, <i style='mso-bidi-font-style:
+
particular metabolic pathway becomes possible as stable genome integration of
-
normal'>et al.</i>, 2005) (IGEM, 2011). Our system may provide an alternative
+
DNA up to several MBps could be done in <i style='mso-bidi-font-style:normal'>A.
-
platform for protein expression, as it is compatible to existing T7
+
vinelandii </i>[6]. Moreover, we only need ammonia to repress the expression
-
promoter-driven constructs. Expression of enzymes along a particular metabolic
+
instead of using expensive IPTG in the counterpart, thus lowering the expense.</span></p>
-
pathway becomes possible as stable genome integration of DNA up to several <span
+
-
class=SpellE>MBps</span> could be done in <i style='mso-bidi-font-style:normal'>A.
+
-
<span class=SpellE>vinelandii</span> </i>(Catherine,<i style='mso-bidi-font-style:
+
-
normal'> et al.</i>, 1989). Moreover, we only need ammonia to repress the
+
-
expression instead of using expensive IPTG in the counterpart, thus lowering
+
-
the expense.</span></p>
+
<p class=MsoNormal style='text-align:justify;text-justify:inter-ideograph'><span
<p class=MsoNormal style='text-align:justify;text-justify:inter-ideograph'><span
Line 160: Line 150:
<p class=MsoNormal style='text-align:justify;text-justify:inter-ideograph'><span
<p class=MsoNormal style='text-align:justify;text-justify:inter-ideograph'><span
lang=EN-US>To sum up, two goals will be achieved: to create a carbon fixation
lang=EN-US>To sum up, two goals will be achieved: to create a carbon fixation
-
system using a combination of bacterial <span class=SpellE>nitrogenase</span>
+
system using a combination of bacterial nitrogenase and hydrogenase enzyme
-
and <span class=SpellE>hydrogenase</span> enzyme complexes to convert CO2 to
+
complexes to convert CO<sub>2</sub> to CH<sub>4</sub>, and to develop a novel
-
CH4, and to develop a novel nitrogen-regulated T7 protein expression system. </span></p>
+
nitrogen-regulated T7 protein expression system.</span></p>
<p class=MsoNormal style='text-align:justify;text-justify:inter-ideograph'><span
<p class=MsoNormal style='text-align:justify;text-justify:inter-ideograph'><span
Line 171: Line 161:
lang=EN-US>References</span></i></b></p>
lang=EN-US>References</span></i></b></p>
-
<p class=MsoNormal style='text-align:justify;text-justify:inter-ideograph'><span
+
<p class=MsoListParagraph style='margin-left:24.1pt;mso-para-margin-left:0gd;
-
lang=EN-US>1.<span style='mso-spacerun:yes'>&nbsp;&nbsp;&nbsp; </span><span
+
text-align:justify;text-justify:inter-ideograph;text-indent:-24.1pt;mso-list:
-
class=SpellE>Seefeldt</span>, L. C., Yang, Z. Y., Duval, S., &amp; Dean, D. R.
+
l0 level1 lfo1'><![if !supportLists]><span lang=EN-US style='mso-bidi-font-size:
-
2013. <span class=SpellE><span class=GramE>Nitrogenase</span></span><span
+
11.0pt;line-height:115%;mso-fareast-font-family:Arial'><span style='mso-list:
-
class=GramE> reduction of carbon-containing compounds.</span> <span
+
Ignore'>1.<span style='font:7.0pt "Times New Roman"'>&nbsp;&nbsp;&nbsp;
-
class=SpellE><i style='mso-bidi-font-style:normal'>Biochimica</i></span><i
+
</span></span></span><![endif]><span lang=EN-US style='mso-bidi-font-size:11.0pt;
-
style='mso-bidi-font-style:normal'> <span class=GramE>et</span> <span
+
line-height:115%'>Baldocchi, D., Valentini, R., Running, S., Oechel, W., And
-
class=SpellE>Biophysica</span> <span class=SpellE>Acta</span>
+
Dahlman, R. (1996) Strategies for measuring and modelling carbon dioxide and
-
(BBA)-Bioenergetics</i>, <i style='mso-bidi-font-style:normal'>1827</i>(8),
+
water vapour fluxes over terrestrial ecosystems. <i>Global change biology</i> <b>2</b>,
-
1102-1111.</span></p>
+
159-168<o:p></o:p></span></p>
-
<p class=MsoNormal style='text-align:justify;text-justify:inter-ideograph'><span
+
<p class=MsoListParagraph style='margin-left:24.1pt;mso-para-margin-left:0gd;
-
lang=EN-US>2.<span style='mso-spacerun:yes'>&nbsp;&nbsp;&nbsp;&nbsp;
+
text-align:justify;text-justify:inter-ideograph;text-indent:-24.1pt;mso-list:
-
</span>BALDOCCHI, D., VALENTINI, R., RUNNING, S., OECHEL, W., &amp; DAHLMAN, R.
+
l0 level1 lfo1'><![if !supportLists]><span lang=EN-US style='mso-bidi-font-size:
-
1996. <span class=GramE>Strategies for measuring and <span class=SpellE>modelling</span>
+
11.0pt;line-height:115%;mso-fareast-font-family:Arial'><span style='mso-list:
-
carbon dioxide and water <span class=SpellE>vapour</span> fluxes over
+
Ignore'>2.<span style='font:7.0pt "Times New Roman"'>&nbsp;&nbsp;&nbsp;&nbsp;
-
terrestrial ecosystems.</span> <span class=GramE><i style='mso-bidi-font-style:
+
</span></span></span><![endif]><span lang=EN-US style='mso-bidi-font-size:11.0pt;
-
normal'>Global change biology</i>, <i style='mso-bidi-font-style:normal'>2</i>(3),
+
line-height:115%'>Seefeldt, L. C., Yang, Z. Y., Duval, S., and Dean, D. R.
-
159-168.</span></span></p>
+
(2013) Nitrogenase reduction of carbon-containing compounds. <i>Biochim Biophys
 +
Acta</i> <b>1827</b>, 1102-1111<o:p></o:p></span></p>
-
<p class=MsoNormal style='text-align:justify;text-justify:inter-ideograph'><span
+
<p class=MsoListParagraph style='margin-left:24.1pt;mso-para-margin-left:0gd;
-
lang=EN-US><o:p>&nbsp;</o:p></span></p>
+
text-align:justify;text-justify:inter-ideograph;text-indent:-24.1pt;mso-list:
 +
l0 level1 lfo1'><![if !supportLists]><span lang=EN-US style='mso-bidi-font-size:
 +
11.0pt;line-height:115%;mso-fareast-font-family:Arial'><span style='mso-list:
 +
Ignore'>3.<span style='font:7.0pt "Times New Roman"'>&nbsp;&nbsp;&nbsp;&nbsp;
 +
</span></span></span><![endif]><span lang=EN-US style='mso-bidi-font-size:11.0pt;
 +
line-height:115%'>Yang, Z. Y., Moure, V. R., Dean, D. R., and Seefeldt, L. C.
 +
(2012) Carbon dioxide reduction to methane and coupling with acetylene to form
 +
propylene catalyzed by remodeled nitrogenase. <i>Proc Natl Acad Sci U S A</i> <b>109</b>,
 +
19644-19648<o:p></o:p></span></p>
-
<p class=MsoNormal style='text-align:justify;text-justify:inter-ideograph'><span
+
<p class=MsoListParagraph style='margin-left:24.1pt;mso-para-margin-left:0gd;
-
lang=EN-US>3. Yang, Z. Y., Moure, V. R., Dean, D. R., &amp; <span class=SpellE>Seefeldt</span>,
+
text-align:justify;text-justify:inter-ideograph;text-indent:-24.1pt;mso-list:
-
L. C. (2012). Carbon dioxide reduction to methane and coupling with acetylene
+
l0 level1 lfo1'><![if !supportLists]><span lang=EN-US style='mso-bidi-font-size:
-
to form propylene catalyzed by remodeled <span class=SpellE>nitrogenase</span>.
+
11.0pt;line-height:115%;mso-fareast-font-family:Arial'><span style='mso-list:
-
<i style='mso-bidi-font-style:normal'>Proceedings of the National Academy of
+
Ignore'>4.<span style='font:7.0pt "Times New Roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
-
Sciences</i>, <i style='mso-bidi-font-style:normal'>109</i>(48), 19644-19648.</span></p>
+
</span></span></span><![endif]><span lang=EN-US style='mso-bidi-font-size:11.0pt;
 +
line-height:115%'>Hamilton, T. L., Ludwig, M., Dixon, R., Boyd, E. S., Dos
 +
Santos, P. C., Setubal, J. C., Bryant, D. A., Dean, D. R., and Peters, J. W.
 +
(2011) Transcriptional profiling of nitrogen fixation in <i style='mso-bidi-font-style:
 +
normal'>Azotobacter vinelandii</i>. <i>J Bacteriol</i> <b>193</b>, 4477-4486<o:p></o:p></span></p>
-
<p class=MsoNormal style='text-align:justify;text-justify:inter-ideograph'><span
+
<p class=MsoListParagraph style='margin-left:24.1pt;mso-para-margin-left:0gd;
-
lang=EN-US><o:p>&nbsp;</o:p></span></p>
+
text-align:justify;text-justify:inter-ideograph;text-indent:-24.1pt;mso-list:
 +
l0 level1 lfo1'><![if !supportLists]><span lang=EN-US style='mso-bidi-font-size:
 +
11.0pt;line-height:115%;mso-fareast-font-family:Arial'><span style='mso-list:
 +
Ignore'>5.<span style='font:7.0pt "Times New Roman"'>&nbsp;&nbsp;&nbsp;
 +
</span></span></span><![endif]><span lang=EN-US style='mso-bidi-font-size:11.0pt;
 +
line-height:115%'>Curatti, L., Brown, C. S., Ludden, P. W., and Rubio, L. M.
 +
(2005) Genes required for rapid expression of nitrogenase activity in <i
 +
style='mso-bidi-font-style:normal'>Azotobacter vinelandii</i>. <i>Proc Natl
 +
Acad Sci U S A</i> <b>102</b>, 6291-6296 <o:p></o:p></span></p>
-
<p class=MsoNormal style='text-align:justify;text-justify:inter-ideograph'><span
+
<p class=MsoListParagraph style='margin-left:24.1pt;mso-para-margin-left:0gd;
-
lang=EN-US>4.<span style='color:#222222;background:white;mso-highlight:white'>Hamilton,
+
text-align:justify;text-justify:inter-ideograph;text-indent:-24.1pt;mso-list:
-
T. L., Ludwig, M., Dixon, R., Boyd, E. S., Dos Santos, P. C., Setubal, J. C.,
+
l0 level1 lfo1'><![if !supportLists]><span lang=EN-US style='mso-bidi-font-size:
-
... &amp; Peters, J. W. (2011). <span class=GramE>Transcriptional profiling of
+
11.0pt;line-height:115%;mso-fareast-font-family:Arial'><span style='mso-list:
-
nitrogen fixation in <span class=SpellE>Azotobacter</span> <span class=SpellE>vinelandii</span>.</span>
+
Ignore'>6.<span style='font:7.0pt "Times New Roman"'>&nbsp;&nbsp;&nbsp;
-
<span class=GramE><i style='mso-bidi-font-style:normal'>Journal of bacteriology</i>,
+
</span></span></span><![endif]><span lang=EN-US style='mso-bidi-font-size:11.0pt;
-
<i style='mso-bidi-font-style:normal'>193</i>(17), 4477-4486.</span></span></span></p>
+
line-height:115%'>Renaud, C. S., Pasternak, J., and Glick, B. R. (1989)
 +
Integration of exogenous DNA into the genome of<i style='mso-bidi-font-style:
 +
normal'> Azotobacter vinelandii</i>. <i>Archives of microbiology</i> <b>152</b>,
 +
437-44<o:p></o:p></span></p>
-
<p class=MsoNormal style='text-align:justify;text-justify:inter-ideograph'><span
 
-
lang=EN-US><o:p>&nbsp;</o:p></span></p>
 
-
<p class=MsoNormal style='text-align:justify;text-justify:inter-ideograph'><span
 
-
lang=EN-US>5. Trinity L. H., Marcus L., Ray <span class=SpellE>D.,Eric</span> <span
 
-
class=SpellE>S.B.,Patricia</span> C.D.S., <span class=SpellE>Jo&atilde;o</span> C. S.,
 
-
Donald A. B., Dennis R. D. and John W. P., (2011). Transcriptional Profiling of
 
-
Nitrogen Fixation in <span class=SpellE>Azotobacter</span> <span class=SpellE>vinelandii</span>.
 
-
<i style='mso-bidi-font-style:normal'>Journal of Bacteriology</i>, 193(17):
 
-
4477–4486.</span></p>
 
-
<p class=MsoNormal style='text-align:justify;text-justify:inter-ideograph'><span
 
-
lang=EN-US><span style='mso-spacerun:yes'>&nbsp;</span></span></p>
 
-
<p class=MsoNormal style='text-align:justify;text-justify:inter-ideograph'><span
 
-
class=GramE><span lang=EN-US>6.Curatti</span></span><span lang=EN-US>, L.,
 
-
Brown, C. S., <span class=SpellE>Ludden</span>, P. W., &amp; Rubio, L. M.
 
-
(2005). Genes required for rapid expression of <span class=SpellE>nitrogenase</span>
 
-
activity in <span class=SpellE>Azotobacter</span> <span class=SpellE>vinelandii.<i
 
-
style='mso-bidi-font-style:normal'>Proceedings</i></span><i style='mso-bidi-font-style:
 
-
normal'> of the National Academy of Sciences of the United States of America</i>,
 
-
<i style='mso-bidi-font-style:normal'>102</i>(18), 6291-6296.</span></p>
 
-
 
-
<p class=MsoNormal style='text-align:justify;text-justify:inter-ideograph'><span
 
-
lang=EN-US><span style='mso-spacerun:yes'>&nbsp;</span></span></p>
 
-
 
-
<p class=MsoNormal style='text-align:justify;text-justify:inter-ideograph'><span
 
-
lang=EN-US>7. http://parts.igem.org/Part:BBa_K568003</span></p>
 
-
 
-
<p class=MsoNormal style='text-align:justify;text-justify:inter-ideograph'><span
 
-
lang=EN-US><span style='mso-spacerun:yes'>&nbsp;</span></span></p>
 
-
 
-
<p class=MsoNormal style='text-align:justify;text-justify:inter-ideograph'><span
 
-
lang=EN-US>8. Catherine S. R., J. J. Pasternak, Bernard R. G., (1989). <span
 
-
class=GramE>Integration of exogenous DNA into the genome of <span class=SpellE>Azotobacter</span>
 
-
<span class=SpellE>vinelandii</span>.</span> Archives of <span class=GramE>Microbiology
 
-
,152</span>(5), 437-440</span></p>
 
-
 
-
<p class=MsoNormal style='text-align:justify;text-justify:inter-ideograph'><span
 
-
lang=EN-US><o:p>&nbsp;</o:p></span></p>
 
-
 
-
<p class=MsoNormal style='text-align:justify;text-justify:inter-ideograph'><span
 
-
lang=EN-US><o:p>&nbsp;</o:p></span></p>
 
-
 
-
<p class=MsoNormal style='text-align:justify;text-justify:inter-ideograph'><span
 
-
lang=EN-US><o:p>&nbsp;</o:p></span></p>
 
-
 
-
<p class=MsoNormal style='text-align:justify;text-justify:inter-ideograph'><span
 
-
lang=EN-US><o:p>&nbsp;</o:p></span></p>
 
</td>
</td>

Latest revision as of 15:59, 14 August 2014



WELCOME TO iGEM 2014!

Your team has been approved and you are ready to start the iGEM season!
On this page you can document your project, introduce your team members, document your progress
and share your iGEM experience with the rest of the world!


Click here to edit this page!

Home Team Official Team Profile Project Parts Modeling Notebook Safety Attributions

Methanator

 

Project Description

Carbon dioxide (CO2) is notorious for its major contribution to global warming, where one of the impacts brought to the ecosystem is its excessive solvation into the ocean in carbonate form, threatening marine life [1]. This year we would like to utilize and recharge these abundantly available CO2 by converting to methane (CH4), an important carbon source for fuel and bio-degradable plastic production. While there are naturally existing methane-generating microorganisms, the convertion involves multi-step metabolic reactions, not to mention that they can only survive in anaerobic environment thus diffcult to manipulate.

 

A recent research showed that a mutated form of nitrogenase from Azotobacter vinelandii, a nitrogen-fixing bacteria found in soil, has carbon fixation ability [2]. Yang et al. [3] demonstrated that by introducing 70Ala and 195Gln mutations on nitrogenase alpha subunit, the nitrogenase enzyme complex reduced CO2 and CO3- to CH4 instead of converting nitrogen to ammonia. This system provided a one-step reaction to convert CO2 into CH4 and other carbon compounds directly. However, since a large electron flux, thus energy, was wasted in producing molecular hydrogen (H2) from proton during the reaction, we utilized a soluble hydrogenase complex from Aquifex aeolicus to recycle H2 to proton. To further enhance the efficiency of carbon fixation process, we physically linked both nitrogenase and hydrogenase complexes with SH3 and PDZ ligand-domain pairs to accelerate the H2 recycling.

 

To allow regulation of expression of these enzymes in A. vinelandii, we plan to build a T7 protein expression system in this diazotrophic bacteria. Given that this organism produces more nitrogenase complex, which includes the structural gene nifH, in the absence of ammonia [4], we utilized its strong nitrogen-derepressible nifH promoter [4] to control T7 RNA polymerase expression. nifH promoter appeared to be stronger than its counterpart, lacUV5 promoter, in E. coli ([5] and characterization data of iGEM Biobrick K568003). Our system may provide an alternative platform for protein expression, as it is compatible to existing T7 promoter-driven constructs. Expression of enzymes along a particular metabolic pathway becomes possible as stable genome integration of DNA up to several MBps could be done in A. vinelandii [6]. Moreover, we only need ammonia to repress the expression instead of using expensive IPTG in the counterpart, thus lowering the expense.

 

To sum up, two goals will be achieved: to create a carbon fixation system using a combination of bacterial nitrogenase and hydrogenase enzyme complexes to convert CO2 to CH4, and to develop a novel nitrogen-regulated T7 protein expression system.

 

References

1.    Baldocchi, D., Valentini, R., Running, S., Oechel, W., And Dahlman, R. (1996) Strategies for measuring and modelling carbon dioxide and water vapour fluxes over terrestrial ecosystems. Global change biology 2, 159-168

2.     Seefeldt, L. C., Yang, Z. Y., Duval, S., and Dean, D. R. (2013) Nitrogenase reduction of carbon-containing compounds. Biochim Biophys Acta 1827, 1102-1111

3.     Yang, Z. Y., Moure, V. R., Dean, D. R., and Seefeldt, L. C. (2012) Carbon dioxide reduction to methane and coupling with acetylene to form propylene catalyzed by remodeled nitrogenase. Proc Natl Acad Sci U S A 109, 19644-19648

4.      Hamilton, T. L., Ludwig, M., Dixon, R., Boyd, E. S., Dos Santos, P. C., Setubal, J. C., Bryant, D. A., Dean, D. R., and Peters, J. W. (2011) Transcriptional profiling of nitrogen fixation in Azotobacter vinelandii. J Bacteriol 193, 4477-4486

5.    Curatti, L., Brown, C. S., Ludden, P. W., and Rubio, L. M. (2005) Genes required for rapid expression of nitrogenase activity in Azotobacter vinelandii. Proc Natl Acad Sci U S A 102, 6291-6296

6.    Renaud, C. S., Pasternak, J., and Glick, B. R. (1989) Integration of exogenous DNA into the genome of Azotobacter vinelandii. Archives of microbiology 152, 437-44

You can use these subtopics to further explain your project

  1. Overall project summary
  2. Project Details
  3. Materials and Methods
  4. The Experiments
  5. Results
  6. Data analysis
  7. Conclusions

It's important for teams to describe all the creativity that goes into an iGEM project, along with all the great ideas your team will come up with over the course of your work.

It's also important to clearly describe your achievements so that judges will know what you tried to do and where you succeeded. Please write your project page such that what you achieved is easy to distinguish from what you attempted.