Team:UT-Tokyo

From 2014.igem.org

(Difference between revisions)
Line 20: Line 20:
</div>
</div>
<div class = "contents">
<div class = "contents">
-
<h2>               Project Description</h2>
+
<h2>                   Project Description</h2>
<p>In the field of synthetic biology, Genetic memory devices have been constructed and applied widely from Biocomputing to biomedical technologies as a crucial component. Such memory devices include a cellular counter; a fundamental device which memorizes the number of induction events. Recent efforts have resulted in a cellular counter that can count up to three events. However, this counter cannot be reset to its initial state. Here, we propose a resettable cellular counter called “sigma recounter”. This counter utilizes the regulation system of sigma factor and anti-sigma factor as the key of its resetting mechanism. In this system a set of sigma factors are designed to update and maintain a count that responds to each inducted event. By the other stimulus, the system initiates a genetic circuit that can express a suitable set of anti-sigma factors and erases the existing memory, which will enable our device to restart the count from any state.</p>
<p>In the field of synthetic biology, Genetic memory devices have been constructed and applied widely from Biocomputing to biomedical technologies as a crucial component. Such memory devices include a cellular counter; a fundamental device which memorizes the number of induction events. Recent efforts have resulted in a cellular counter that can count up to three events. However, this counter cannot be reset to its initial state. Here, we propose a resettable cellular counter called “sigma recounter”. This counter utilizes the regulation system of sigma factor and anti-sigma factor as the key of its resetting mechanism. In this system a set of sigma factors are designed to update and maintain a count that responds to each inducted event. By the other stimulus, the system initiates a genetic circuit that can express a suitable set of anti-sigma factors and erases the existing memory, which will enable our device to restart the count from any state.</p>
</div>
</div>
</body>
</body>
</html>
</html>

Revision as of 07:59, 14 August 2014


Project Description

In the field of synthetic biology, Genetic memory devices have been constructed and applied widely from Biocomputing to biomedical technologies as a crucial component. Such memory devices include a cellular counter; a fundamental device which memorizes the number of induction events. Recent efforts have resulted in a cellular counter that can count up to three events. However, this counter cannot be reset to its initial state. Here, we propose a resettable cellular counter called “sigma recounter”. This counter utilizes the regulation system of sigma factor and anti-sigma factor as the key of its resetting mechanism. In this system a set of sigma factors are designed to update and maintain a count that responds to each inducted event. By the other stimulus, the system initiates a genetic circuit that can express a suitable set of anti-sigma factors and erases the existing memory, which will enable our device to restart the count from any state.