Team:Cambridge-JIC/Informatics

From 2014.igem.org

(Difference between revisions)
Line 55: Line 55:
</p>
</p>
<p>Reading recent research papers in search for these genes and looking for their sequences on GenBank and ThaleMine, we constructed a list of protein sequences to compare to the Marchantia predicted scaffolds. (For genes where only the nucleotide sequence was available, instead of the protein sequence, a C++ code was written to perform the translation). We ran a tblastn search in BLAST for the best matches between our candidate proteins and the Marchantia scaffolds. Then, for the best matches (~60% and above, with some judging by eye), we annotated the 2kb upstream of the start codon as a potential promoter region.</p>
<p>Reading recent research papers in search for these genes and looking for their sequences on GenBank and ThaleMine, we constructed a list of protein sequences to compare to the Marchantia predicted scaffolds. (For genes where only the nucleotide sequence was available, instead of the protein sequence, a C++ code was written to perform the translation). We ran a tblastn search in BLAST for the best matches between our candidate proteins and the Marchantia scaffolds. Then, for the best matches (~60% and above, with some judging by eye), we annotated the 2kb upstream of the start codon as a potential promoter region.</p>
-
<p>We plan to identify with such methods about 120 promoter regions to PCR, and then test them by inserting the yellow fluorescent protein Venus.</p>
+
<p>We identified 30 candidate promoters this way, that we are planning to screen by inserting in a construct driving the yellow fluorescent protein Venus. For each promoter, we will make a construct with and one without amplification by GAL4 and GAL4 UAS, to evaluate the promoter strength and get around any leakages due to the use of GAL4. </p>
</html>
</html>

Revision as of 09:35, 11 August 2014