Team:Yale

From 2014.igem.org

(Difference between revisions)
Line 27: Line 27:
left:0;
left:0;
margin-bottom:5px;
margin-bottom:5px;
 +
}
 +
 +
div#vidbutton {
 +
    position:absolute;
 +
    width:100px;
 +
    height:100px;
 +
    background-image:url('paper.gif');
 +
    left:720px;
 +
    top:550px;
}
}
</style>
</style>
Line 37: Line 46:
<h1 style="display:none">Biosynthesis of an Anti-biofouling Surface Binding Polymer with the 21st Amino Acid- L-DOPA</h1>
<h1 style="display:none">Biosynthesis of an Anti-biofouling Surface Binding Polymer with the 21st Amino Acid- L-DOPA</h1>
<br>
<br>
-
<p> <img src="https://static.igem.org/mediawiki/2014/d/d7/Ampersand_for_Yale_iGEM-v2.png" width="1100"> </p>
+
<p> <img src="https://static.igem.org/mediawiki/2014/d/d7/Ampersand_for_Yale_iGEM-v2.png" width="1100"> <div id = "vidbutton"></div></p>
</td>
</td>
</tr>
</tr>

Revision as of 02:52, 18 October 2014

Biosynthesis of an Anti-biofouling Surface Binding Polymer with the 21st Amino Acid- L-DOPA


Producing a Novel Antimicrobial Surface-Binding Peptide Using an Improved T7 Expression System

Biofilm formation on surfaces is an issue in the medical field, naval industry, and other areas. We developed an anti-fouling peptide with two modular components: a mussel adhesion protein (MAP) anchor and LL-37, an antimicrobial peptide. MAPs can selectively attach to metal and organic surfaces via L-3,5-dihydroxyphenylalanine (L-DOPA), a nonstandard amino acid that was incorporated using a genetically recoded organism (GRO). Because this peptide is toxic to the GRO in which it is produced, we designed a better controlled inducible system that limits basal expression. This was achieved through a novel T7 riboregulation system that controls expression at both the transcriptional and translational levels. This improved system is a precise synthetic switch for the expression of cytotoxic substances in the already robust T7 system. Lastly, the antimicrobial surface-binding peptide was assayed for functionality.

Main Campus:
Molecular, Cellular & Developmental Biology
219 Prospect Street
P.O. Box 208103
New Haven, CT 06520
Phone: 203.432.3783
igem@yale.edu
natalie.ma@yale.edu (Graduate Advisor)
Copyright (c) 2014 Yale IGEM