Team:British Columbia/ProjectBiomining

From 2014.igem.org

(Difference between revisions)
Line 13: Line 13:
                   </p>
                   </p>
                   <p>
                   <p>
-
'''Our solution''':
+
'''Our solution: Mineral Binding''':
-
We, the UBC iGEM team, feel that separation and enrichment can be done in other ways that does not rely on energy or chemically-intensive methods. Our synbio solution involves the use of small surface heptapeptides and octapeptides, which have previously been demonstrated in M13 bacteriophage by Curtis et al. to selectively bind to chalcopyrite(3). Three peptides, labelled WSD-1 (TPTTYKV), WSD-2 (DSQKTNPS), and WSD-3 (DPIKHTSG), have been identified for binding. However, operating with bacteriophage is not feasible for large scale operations in mining as it is difficult to scale up titers to compensate for the smaller surface area available for binding in bacteriophage. Our idea is to operate these peptides in bacteria which have a larger surface area and are much more responsive to stimuli. These peptides must be accessible on the surface. Therefore, we have chosen ''Caulobacter crescentus'' as the chosen chassis given that it contains a S-protein layer in which we can express our peptides. A developed kit for protein secretion and display of peptides on the cell surface S-layer in ''Caulobacter crescentus'' (via cloning to the S-layer gene sequence) can be found within
+
We, the UBC iGEM team, feel that separation and enrichment can be done in other ways that does not rely on energy or chemically-intensive methods. Our synbio solution involves the use of small surface heptapeptides and octapeptides, which have previously been demonstrated in M13 bacteriophage by Curtis et al. to selectively bind to chalcopyrite(3). Three peptides, labelled WSD-1 (TPTTYKV), WSD-2 (DSQKTNPS), and WSD-3 (DPIKHTSG), have been identified for binding. However, operating with bacteriophage is not feasible for large scale operations in mining as it is difficult to scale up titers to compensate for the smaller surface area available for binding in bacteriophage. Our idea is to operate these peptides in bacteria which have a larger surface area and are much more responsive to stimuli. These peptides must be accessible on the surface. Therefore, we have chosen ''Caulobacter crescentus'' as our chassis given that it contains a S-protein layer in which we can express our peptides. A developed kit for protein secretion and display of peptides on the cell surface S-layer in ''Caulobacter crescentus'' (via cloning to the S-layer gene sequence) can be found within
<a href="http://ubc.flintbox.com/public/project/1487/">Caulobacter S-layer Kits</a>.
<a href="http://ubc.flintbox.com/public/project/1487/">Caulobacter S-layer Kits</a>.
Line 21: Line 21:
           <p>
           <p>
-
As a proof of concept, we have chosen to express these peptides to selectively bind to chalcopyrite, which will then fall out of solution by aggregation using two interacting coiled-coil peptides expressed on the S-layer of ''Caulobacter crescentus''. These coiled-coil peptides (K-coil: <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1189012">BBa_K1189012</a> , E-coil: <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1189013">BBa_K1189013</a>, K-coil-His:<a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1189010">BBa_K1189010</a>, and E-coil-His: <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1189011">BBa_K1189011</a> )were constructed by iGEM Calgary 2013. Alternatively, we have thought about floating  
+
 
 +
'''Our solution: Mineral Separation''':
 +
 
 +
As a proof of concept, we have chosen to express these peptides to selectively bind to chalcopyrite, which will then fall out of solution by aggregation using two interacting coiled-coil peptides expressed on the S-layer of ''Caulobacter crescentus''. These coiled-coil peptides (K-coil: <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1189012">BBa_K1189012</a> , E-coil: <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1189013">BBa_K1189013</a>, K-coil-His: <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1189010">BBa_K1189010</a>, and E-coil-His: <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1189011">BBa_K1189011</a> )were constructed by iGEM Calgary 2013. In this model, Caulobacter A will coalesce with Caulobacter B by E-coil and K-coil interactions form a mass that will selectively sink in a froth floation solution. Alternatively, we have considered floating bound chalcopyrite

Revision as of 02:41, 18 October 2014

2014 UBC iGEM

© 2014 UBC iGEM