Team:XMU-China/Project Modelling Intracellularmodel
From 2014.igem.org
Line 736: | Line 736: | ||
</p> | </p> | ||
<p style="font-family:Arial;font-size:16px;padding-top:16px;"> | <p style="font-family:Arial;font-size:16px;padding-top:16px;"> | ||
- | <a href="http://www.ncbi.nlm.nih.gov/pubmed/21998392" target="_blank">2. | + | <a href="http://www.ncbi.nlm.nih.gov/pubmed/21998392" target="_blank">2.Basu S, Gerchman Y, Collins C H, et al. A synthetic multicellular system for programmed pattern formation. Nature, 2005, 434: 1130-1134. </a> |
- | </a> | + | |
</p> | </p> | ||
<p style="font-family:Arial;font-size:16px;padding-top:16px;"> | <p style="font-family:Arial;font-size:16px;padding-top:16px;"> |
Revision as of 03:18, 18 October 2014
INTRACELLULAR MODEL
The following functions are based on ordinary differential equations with Hill functions that captured the activation and repression of protein synthesis.
The intracellular species included cheZ (C or ZT), LacI (L), L-ara (A), IPTG (I).
Equations as follows[1][2]:
|
(a) |
|
(b) |
Parameters:
α----- protein synthesis rate()
β----- repression coefficient( )
γ----- protein decay()
δ-----activation coefficient()
m----- transcription factor cooperativity ()
With above two equations, the relation between stimuli and intracellular is built. With certain concentration of IPTG and L-arabinose, the concentration of cheZ (ZT) will get for the following modeling.
References
1. Song, K. Introduction to Synthetic Biology. Science Press.