Team:Oxford/biopolymer containment
From 2014.igem.org
(Difference between revisions)
Line 142: | Line 142: | ||
- | + | ||
<br><br> | <br><br> | ||
Demonstration 1.5% agarose 'bead', synthesised by dropping cooling (~40oC) 1.5% agarose solution through 0oC water, via 10mL Gilson pipette:<br><br> | Demonstration 1.5% agarose 'bead', synthesised by dropping cooling (~40oC) 1.5% agarose solution through 0oC water, via 10mL Gilson pipette:<br><br> | ||
Line 152: | Line 152: | ||
<img src="https://static.igem.org/mediawiki/2014/d/d0/Oxigembeadynth4.jpg" style="float:left;position:relative; width:50%;margin-left:25%;margin-right:25%;margin-bottom:2%;" /><br><br> | <img src="https://static.igem.org/mediawiki/2014/d/d0/Oxigembeadynth4.jpg" style="float:left;position:relative; width:50%;margin-left:25%;margin-right:25%;margin-bottom:2%;" /><br><br> | ||
- | |||
- | |||
<img src="https://static.igem.org/mediawiki/2014/5/5e/Oxford_polymer3.jpg" style="float:left;position:relative; width:50%;margin-left:25%;margin-right:25%;margin-bottom:2%;" /> | <img src="https://static.igem.org/mediawiki/2014/5/5e/Oxford_polymer3.jpg" style="float:left;position:relative; width:50%;margin-left:25%;margin-right:25%;margin-bottom:2%;" /> | ||
<br><br> | <br><br> | ||
<img src="https://static.igem.org/mediawiki/2014/d/da/Oxford_polymer4.png" style="float:left;position:relative; width:50%;margin-left:25%;margin-right:25%;margin-bottom:2%;" /> | <img src="https://static.igem.org/mediawiki/2014/d/da/Oxford_polymer4.png" style="float:left;position:relative; width:50%;margin-left:25%;margin-right:25%;margin-bottom:2%;" /> | ||
<br><br> | <br><br> | ||
+ | Acylation of cellulose was achieved via Acetyl Chloride esterification, based on methodology by Org. Lett., 2005, 7, 1805-1808. 1 cm diameter agarose spheres were passed through a thin film of the polymer to coat. Thickness was then calculated by the difference in measured initial and final diameters (an average of 5 diameters, using 0.01 mm precision callipers). | ||
The volatility and poor visible absorption of DCM posed a challenge in reliably measuring rates of diffusion though the polymer. We decided to base our modelling on the diffusion of indigo dye from within prepared beads, collecting the following spectrophotometric absorption data (calibrated to prepared concentration standards): | The volatility and poor visible absorption of DCM posed a challenge in reliably measuring rates of diffusion though the polymer. We decided to base our modelling on the diffusion of indigo dye from within prepared beads, collecting the following spectrophotometric absorption data (calibrated to prepared concentration standards): |
Revision as of 01:12, 18 October 2014