Team:British Columbia/Achievements
From 2014.igem.org
(Difference between revisions)
AnnaMüller (Talk | contribs) |
AnnaMüller (Talk | contribs) |
||
Line 79: | Line 79: | ||
</ul> | </ul> | ||
- | + | ||
<li>Improved 3 existing caffeine biosynthesis biobricks (<a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1129013"> BBa_K1129013 </a>, <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1129015"> BBa_K1129015</a>, <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1129017"> BBa_K1129017</a>) from TU Munich 2012 by replacing a yeast consensus sequence with a bacterial ribosome-binding site for prokaryotic engineering</li> | <li>Improved 3 existing caffeine biosynthesis biobricks (<a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1129013"> BBa_K1129013 </a>, <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1129015"> BBa_K1129015</a>, <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1129017"> BBa_K1129017</a>) from TU Munich 2012 by replacing a yeast consensus sequence with a bacterial ribosome-binding site for prokaryotic engineering</li> | ||
<li>Characterized previous iGEM parts (from <a href="https://2012.igem.org/Team:LMU-Munich"> TU Munich 2012</a>, <a href="https://2009.igem.org/Team:KULeuven/Project">KU Leuven 2009</a>, <a href="https://2007.igem.org/Edinburgh">Edinburgh 2007</a>) in <a href="https://2013.igem.org/Team:British_Columbia/Project/Vanillin">vanillin</a>, <a href="https://2013.igem.org/Team:British_Columbia/Project/Cinnamaldehyde">cinnamaldehyde</a> and <a href="https://2013.igem.org/Team:British_Columbia/Project/Caffeine">caffeine</a> biosynthesis pathways and were able to show functional data for substrate conversion. We are the only team to show data for <a href="https://2013.igem.org/Team:British_Columbia/Project/Vanillin#Data">vanillin</a> and <a href="https://2013.igem.org/Team:British_Columbia/Project/Cinnamaldehyde#Characterization">cinnamaldehyde</a> production in E. coli!</li> | <li>Characterized previous iGEM parts (from <a href="https://2012.igem.org/Team:LMU-Munich"> TU Munich 2012</a>, <a href="https://2009.igem.org/Team:KULeuven/Project">KU Leuven 2009</a>, <a href="https://2007.igem.org/Edinburgh">Edinburgh 2007</a>) in <a href="https://2013.igem.org/Team:British_Columbia/Project/Vanillin">vanillin</a>, <a href="https://2013.igem.org/Team:British_Columbia/Project/Cinnamaldehyde">cinnamaldehyde</a> and <a href="https://2013.igem.org/Team:British_Columbia/Project/Caffeine">caffeine</a> biosynthesis pathways and were able to show functional data for substrate conversion. We are the only team to show data for <a href="https://2013.igem.org/Team:British_Columbia/Project/Vanillin#Data">vanillin</a> and <a href="https://2013.igem.org/Team:British_Columbia/Project/Cinnamaldehyde#Characterization">cinnamaldehyde</a> production in E. coli!</li> |
Revision as of 00:12, 18 October 2014
Achievements
- Submitted 13 and characterized 4 new biobrick parts
- Submitted Cas9 (BBa_K1129006) as our favorite functional part and showed evidence of immunity against phage using CRISPR components.
- Obtained ethics approval to survey public’s perception of GMOs with the aim to create a marketing strategy for a GM Yogurt, following interviews with dairy industry and academic professionals
- Improved 3 existing caffeine biosynthesis biobricks ( BBa_K1129013 , BBa_K1129015, BBa_K1129017) from TU Munich 2012 by replacing a yeast consensus sequence with a bacterial ribosome-binding site for prokaryotic engineering
- Characterized previous iGEM parts (from TU Munich 2012, KU Leuven 2009, Edinburgh 2007) in vanillin, cinnamaldehyde and caffeine biosynthesis pathways and were able to show functional data for substrate conversion. We are the only team to show data for vanillin and cinnamaldehyde production in E. coli!
- Currently exploring the consequences of off-target activity in the CRISPR system. We are in the process of developing a resource (SPACE-R) to assess the safety and specificity of individual spacer sequences.
- Developed comprehensive models that (1) predict growth of CRISPR-expressing E. coli cultures under phage predation, visualized using ‘Gro simulation’ (2) compute the cinnamaldehyde production following population tuning with various initial starting number of viruses