Team:NU Kazakhstan
From 2014.igem.org
Line 100: | Line 100: | ||
<p>Oral squamous cell carcinoma (OSCC) is a malignant tumor with 640,000 new cases annually in the world. Saliva testing is non-invasive procedure that is capable to detect potential biomarkers for OSCC. The DNA, RNA and proteins derived from the cancerous cells can be obtained from saliva samples. It was shown that elevated level of p53 protein was identified in OSCC patients at different stages of the disease. Camelid antibodies containing only variable regions, nanobodies (VHH) and single-chain variable regions (scFv) with VH and VL, are becoming popular in many biological studies including diagnostic applications. It was identified that VL region alone showed higher affinity to p53 than VHH, and dimerization of VL region with another one increases the affinity up to 10 folds. Camelid antibodies have similiar affinity to its substrate as human antibodies and can be conjugated to other proteins without functional lose. They can be expressed and secreted in many organisms including E.Coli in high amount, which reduces the cost of antibodies production. Thus, the aim of this project is to design a biosensor, based on available sequence of antibodies, to detect p53 in saliva samples for OSCC diagnosis. | <p>Oral squamous cell carcinoma (OSCC) is a malignant tumor with 640,000 new cases annually in the world. Saliva testing is non-invasive procedure that is capable to detect potential biomarkers for OSCC. The DNA, RNA and proteins derived from the cancerous cells can be obtained from saliva samples. It was shown that elevated level of p53 protein was identified in OSCC patients at different stages of the disease. Camelid antibodies containing only variable regions, nanobodies (VHH) and single-chain variable regions (scFv) with VH and VL, are becoming popular in many biological studies including diagnostic applications. It was identified that VL region alone showed higher affinity to p53 than VHH, and dimerization of VL region with another one increases the affinity up to 10 folds. Camelid antibodies have similiar affinity to its substrate as human antibodies and can be conjugated to other proteins without functional lose. They can be expressed and secreted in many organisms including E.Coli in high amount, which reduces the cost of antibodies production. Thus, the aim of this project is to design a biosensor, based on available sequence of antibodies, to detect p53 in saliva samples for OSCC diagnosis. | ||
</p> | </p> | ||
- | + | <br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br> | |
<p>OUR FRIENDS)))))))))) | <p>OUR FRIENDS)))))))))) | ||
</p> | </p> | ||
Line 110: | Line 110: | ||
width="150"></a> | width="150"></a> | ||
</div> | </div> | ||
- | </p> | + | </p> <br><br><br><br><br><br><br><br><br><br><br><br><br><br><br> |
<p style="color:#E7E7E7"> <a href="https://2014.igem.org/wiki/index.php?title=Team:NU_Kazakhstan&action=edit"style="color:#FF0000"> Edit!!!!!!</a> </p> | <p style="color:#E7E7E7"> <a href="https://2014.igem.org/wiki/index.php?title=Team:NU_Kazakhstan&action=edit"style="color:#FF0000"> Edit!!!!!!</a> </p> | ||
</td> | </td> |
Revision as of 17:11, 17 July 2014
|
|
|