Team:Valencia UPV/Project/results/pheromone analysis
From 2014.igem.org
Line 9: | Line 9: | ||
- | <p>It was a long way to get here but, after our first results, future looked promising. This is what we got so far: the different parts needed to build the <a class="normal-link-page" href="https://2014.igem.org/Team:Valencia_UPV/Project/results/constructs#biosyn">pheromone biosynthesis device</a> were domesticated and assembled with the help of <a class="normal-link-page" href="https://2014.igem.org/Team:Valencia_UPV/Project/modules/methodology/gb">GoldenBraid 2.0</a>. Once the constructs were obtained, they were transiently transformed by <a class="blue-bold">agroinfiltration</a> into our plant chassis, <a class="italic">N. benthamiana</a>. Now, the moment of truth has arrived: do our plants actually produce the target pheromones | + | <p>It was a long way to get here but, after our first results, future looked promising. This is what we got so far: the different parts needed to build the <a class="normal-link-page" href="https://2014.igem.org/Team:Valencia_UPV/Project/results/constructs#biosyn">pheromone biosynthesis device</a> were domesticated and assembled with the help of <a class="normal-link-page" href="https://2014.igem.org/Team:Valencia_UPV/Project/modules/methodology/gb">GoldenBraid 2.0</a>. Once the constructs were obtained, they were transiently transformed by <a class="blue-bold">agroinfiltration</a> into our plant chassis, <a class="italic">N. benthamiana</a>. Now, the moment of truth has arrived: do our plants actually produce the target pheromones?</p><br/><br/> |
- | <div align="center"><img width=" | + | <div align="center"><img width="850px" src="https://static.igem.org/mediawiki/2014/8/86/VUPVProceso-1.png"></img></div><br/> |
- | <p> | + | <p>To answer this question, we analysed the volatiles produced by our "Sexy Plants" using <a class="normal-link-page" href="https://2014.igem.org/Team:Valencia_UPV/Project/modules/methodology/sample_preparation">HS-SPME</a> coupled to <a class="normal-link-page" href="https://2014.igem.org/Team:Valencia_UPV/Project/modules/methodology/sample_analysis">GC-MS</a>. We co-infiltrated our pheromone biosynthesis device together with a construct carrying the silencing suppressor P19(*), as well as the P19 construct alone as negative control. Below you can see a representative full scan chromatogram of each of them.</p><br/><br/> |
- | <div align="center" | + | <div align="center"><img width="850px" src="https://static.igem.org/mediawiki/2014/e/e4/VUPVFigura_Cromatogramas.png"></img></div><br/> |
- | + | <div align="center"><p style="font-size: 0.8em; width: 70%;"><b>Figure 1</b>. GC-MS analysis of the volatile organic compounds from a genetically engineered and control <i>N. benthamiana</i> plants. On the right, an overlay chromatogram (control/sexy plant) of the two pheromone peaks from a SIM mode acquisition for pheromone representative ions.</p></div><br/> | |
- | + | ||
- | + | ||
- | < | + | |
- | + | ||
- | + | ||
- | <div align="center"><p style="font-size: 0.8em; width: 70%;">Figure 1. GC-MS analysis of the volatile organic compounds from a | + | |
- | <p> | + | <p>With just one glance, we could identify two peaks in the genetically engineered <i>N. benthamiana</i> plants that were not present in the control.<br/> |
+ | Could those peaks be our pheromones? A comparison of their mass spectra with the NIST mass spectrum library retrieved <span class="red-bold">(Z)-11-hexadecen-1-ol</span> and <span class="blue-bold">(Z)-11-hexadecenyl acetate</span> as best matches. Furthermore, this putative identification was confirmed by comparing their retention time and mass spectra with those of pure <span class="red-bold">(Z)-11-hexadecen-1-ol</span> and <span class="blue-bold">(Z)-11-hexadecenyl acetate</span> synthesised at the CEQA (UPV, Spain) and analysed under identical GC-MS conditions. So, yes, <b>our genetically engineered N. benthamiana is sexy!!!!</b> | ||
+ | </p><br/><br/> | ||
Line 48: | Line 44: | ||
<div align="center"><img width="80%" src="https://static.igem.org/mediawiki/2014/e/e7/VUPVAldehyde_peak.png" alt="aldehyde_peak"></img></div><br/> | <div align="center"><img width="80%" src="https://static.igem.org/mediawiki/2014/e/e7/VUPVAldehyde_peak.png" alt="aldehyde_peak"></img></div><br/> | ||
+ | |||
+ | <div align="center"> | ||
+ | <table> | ||
+ | <tr> | ||
+ | <td><img width="200px" src="https://static.igem.org/mediawiki/2014/a/a2/VUPVN._benthamiana_RECORTADA.png" alt="nicotiana"></img></td> | ||
+ | <td><img width="600px" src="https://static.igem.org/mediawiki/2014/c/c3/VUPVDiapositiva2.jpg" alt="diap_1"></img></td> | ||
+ | </tr> | ||
+ | </table></div> | ||
<p>At the end of the journey <a class="black-bold">we have achieved a plant able to produce three insect sexual pheromones</a>:</p><br/> | <p>At the end of the journey <a class="black-bold">we have achieved a plant able to produce three insect sexual pheromones</a>:</p><br/> |
Revision as of 00:03, 18 October 2014
Project > Results > Pheromone Analysis
It was a long way to get here but, after our first results, future looked promising. This is what we got so far: the different parts needed to build the pheromone biosynthesis device were domesticated and assembled with the help of GoldenBraid 2.0. Once the constructs were obtained, they were transiently transformed by agroinfiltration into our plant chassis, N. benthamiana. Now, the moment of truth has arrived: do our plants actually produce the target pheromones?
To answer this question, we analysed the volatiles produced by our "Sexy Plants" using HS-SPME coupled to GC-MS. We co-infiltrated our pheromone biosynthesis device together with a construct carrying the silencing suppressor P19(*), as well as the P19 construct alone as negative control. Below you can see a representative full scan chromatogram of each of them.
Figure 1. GC-MS analysis of the volatile organic compounds from a genetically engineered and control N. benthamiana plants. On the right, an overlay chromatogram (control/sexy plant) of the two pheromone peaks from a SIM mode acquisition for pheromone representative ions.
With just one glance, we could identify two peaks in the genetically engineered N. benthamiana plants that were not present in the control.
Could those peaks be our pheromones? A comparison of their mass spectra with the NIST mass spectrum library retrieved (Z)-11-hexadecen-1-ol and (Z)-11-hexadecenyl acetate as best matches. Furthermore, this putative identification was confirmed by comparing their retention time and mass spectra with those of pure (Z)-11-hexadecen-1-ol and (Z)-11-hexadecenyl acetate synthesised at the CEQA (UPV, Spain) and analysed under identical GC-MS conditions. So, yes, our genetically engineered N. benthamiana is sexy!!!!
Figure 2. GC-MS analysis of the volatile organic compounds from a genetically engineered Nicotiana benthamiana to produce insect pheromones.
As it can be observed, not only the production of the pheromones was achieved, but also they were among the most abundant volatile compounds in the plant. In addition, as it can be appreciated, the ratio between the abundance of (Z)-11-hexadecen-1-ol and (Z)-11-hexadecenyl acetate was approximately 4 to 1. This means that unprecedented conversion rates were achieved, compared to previous publications (Ding et al. 2014). Such improved conversion rate can be attributed to the use of a single multigene construction (see Results- Constructs- Biosynthesis) comprising all three genes needed to produce the pheromones in a single plasmid and thus, facilitating the simultaneous expression of the three enzymes in the plant cells. (see Biosynthesis).
Finally, even though the obtention of the enzyme necessary for the biosynthesis of (Z)-11-hexadecenal was not possible (see notebook: FAO1 obtention), the possible presence of this pheromone was also checked. Therefore, the standard was analysed and the corresponding molecule was looked for in the transformed N. benthamiana leaf chromatogram. Surprisingly, a small peak was identified, that was not present in the control and corresponded to (Z)-11-hexadecenal. The conversion of (Z)-11-hexadecen-1-ol into (Z)-11–hexadecenal was probably performed by an endogenous alcohol oxidase from the plant, which was documented as not having significant in vivo activity (Sol Genomics Network). As the conversion rate was low, this opened a field for futher studies on pheromone plant-production.
At the end of the journey we have achieved a plant able to produce three insect sexual pheromones:
- (Z)-11-hexadecen-1-ol as the most abundant plant volatile.
- (Z)-11-hexadecenyl acetate as one of the most abundant volatile molecules in the plant, with an unprecedented conversion yield.
- (Z)-11-hexadecenal, produced by an endogenous plant enzyme at low yield that could be improved in future studies.