Team:Yale/MaterialsMethods
From 2014.igem.org
Line 128: | Line 128: | ||
<p> | <p> | ||
<strong>Strains, Plasmids, and Reagents</strong> <br /> | <strong>Strains, Plasmids, and Reagents</strong> <br /> | ||
- | E. coli strains used in this study included BL21(E. coli B F- dcm ompT hsdS(rB- mB-) gal [malB+]K-12(λS)), BL21(DE3)( F– ompT gal dcm lon hsdSB(rB- mB-) λ(DE3 [lacI lacUV5-T7 gene 1 ind1 sam7 nin5])), ECNR2(ΔmutS:cat.Δ(ybhB-bioAB): [λcI857.Δ(cro-ea59):tetR-bla]), Mach1(ΔrecA1398 endA1 tonA Φ80ΔlacM15 ΔlacX74 hsdR(rK- mK+)), and 730. Strains used for transformation were grown in LB min (Cold Spring Harbor Protocols 2006). Cells used for cloning and mini-prep were grown in selective medium of 2XYT (2xYt Medium (7281) 2010) with either kanamycin (American Bioanalytical) or spectinomycin (Sigma-Aldrich). Kanamycin and streptomycin were used at 30 mg/mL and 95 mg/mL respectively. | + | E. coli strains used in this study included BL21(E. coli B F- dcm ompT hsdS(rB- mB-) gal [malB+]K-12(λS)), BL21(DE3)( F– ompT gal dcm lon hsdSB(rB- mB-) λ(DE3 [lacI lacUV5-T7 gene 1 ind1 sam7 nin5])), ECNR2(ΔmutS:cat.Δ(ybhB-bioAB): [λcI857.Δ(cro-ea59):tetR-bla]), Mach1(ΔrecA1398 endA1 tonA Φ80ΔlacM15 ΔlacX74 hsdR(rK- mK+)), and 730. Strains used for transformation were grown in LB min (Cold Spring Harbor Protocols 2006). Cells used for cloning and mini-prep were grown in selective medium of 2XYT (2xYt Medium (7281) 2010) with either kanamycin (American Bioanalytical) or spectinomycin (Sigma-Aldrich). Kanamycin and streptomycin were used at 30 mg/mL and 95 mg/mL respectively. <br> |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
One percent agarose gels were made with 0.5% TBE obtained from American Bio and stained with either ethidium bromide (Sigma-Aldrich) in the case of screening or SYBR Safe (Invitrogen) in the case of cloning. Gel extraction and purification was completed with QIAprep Gel Extraction Kit following the protocol provided. PCR purification was accomplished with the QIAquick PCR Purification Kit, following the protocol provided. Plasmid purification was accomplished using the QIAprep Spin Miniprep Kit and the protocol provided. For all DNA kits provided by QIAgen we used Denville Spin Columns for Nucleic Acid Purification. The concentration of DNA was measured using a Biotek Synergy HT Multi-Mode microplate Reader with accompanying Take3 Microvolume plates. All restriction enzymes, and Gibson Assembly Master Mix are from New England Biolabs. Hifi HotStart Readymix and 2GFAST Readymix with loading dye for PCR were obtained from KAPA Biosystems. | One percent agarose gels were made with 0.5% TBE obtained from American Bio and stained with either ethidium bromide (Sigma-Aldrich) in the case of screening or SYBR Safe (Invitrogen) in the case of cloning. Gel extraction and purification was completed with QIAprep Gel Extraction Kit following the protocol provided. PCR purification was accomplished with the QIAquick PCR Purification Kit, following the protocol provided. Plasmid purification was accomplished using the QIAprep Spin Miniprep Kit and the protocol provided. For all DNA kits provided by QIAgen we used Denville Spin Columns for Nucleic Acid Purification. The concentration of DNA was measured using a Biotek Synergy HT Multi-Mode microplate Reader with accompanying Take3 Microvolume plates. All restriction enzymes, and Gibson Assembly Master Mix are from New England Biolabs. Hifi HotStart Readymix and 2GFAST Readymix with loading dye for PCR were obtained from KAPA Biosystems. | ||
</p> | </p> |
Revision as of 23:37, 17 October 2014
Materials and Methods |
|||||||||||
T7 Riboregulation System: Experimental Design
Strains, Plasmids, and Reagents
Two Levels of Regulation for T7 Polymerase Expression |
|||||||||||
Anti-Fouling Peptide ConstructConstruct Synthesis and Expression: Strains, Plasmids, We hypothesize that we can develop an improved version of the current adhesives by developing a fusion protein of Mgfp-5 with Mefp-1 as the anchoring region for the anti-biofouling peptide. An integral part of developing this peptide is to co-translationally insert L-DOPA into our peptide, which has never been done before with mussel foot proteins (Figure 5). In this process of orthogonal translation, we first will get rid of the UAG stop codon and then transform the strain to synthesize tRNA and tRNA transferase that corresponds to the UAG codon and the L-DOPA non-standard amino acid to develop the genetically recoded organism (GRO). The advantage of this procedure is that we have the ability to skip the time-consuming and inefficient tyrosinase enzyme treatment step.
Protein Purification
We plan to purify the protein by using the Twin Strep Tag in tandem with the Flag tag, which was included in out master construct of the anti-biofouling peptide (Figure 6). The Flag tag is perfectly cleavable by the enzyme enterokinase. The FLAG tag is made up of 8 amino acids and works well for low-abundance proteins. It is hydrophilic, so it will most likely not interfere with protein folding and function of the target protein. The Strep tag is also made up of 8 amino acids that will not disturb the protein’s functions. We chose the FLAG tag because it is perfectly cleavable. Info on LL-37 and N-terminus? The protein will be purified in a Strep-Tactin® Sepharose® column. In order to address the L-DOPA adhesive L-DOPA component, our final step is to elute with a base to reduce the amount of the anti-biofouling peptide that sticks to the column due to L-DOPA adhesion (Figure 7).
|
|||||||||||
Characterization of Coating Adhesion PropertiesWe hypothesize that we can develop an improved version of the current adhesives by developing a fusion protein of Mgfp-5 with Mefp-1 as the anchoring region for the anti-biofouling peptide. An integral part of developing this peptide is to co-translationally insert L-DOPA into our peptide, which has never been done before with mussel foot proteins (Figure 5). In this process of orthogonal translation, we first will get rid of the UAG stop codon and then transform the strain to synthesize tRNA and tRNA transferase that corresponds to the UAG codon and the L-DOPA non-standard amino acid to develop the GRO. The advantage of this procedure is that we have the ability to skip the time-consuming and inefficient tyrosinase enzyme treatment step.
Protein Purification
We plan to purify the protein by using the Twin Strep Tag in tandem with the Flag tag, which was included in out master construct of the anti-biofouling peptide (Figure 6). The Flag tag is perfectly cleavable by the enzyme enterokinase. The FLAG tag is made up of 8 amino acids and works well for low-abundance proteins. It is hydrophilic, so it will most likely not interfere with protein folding and function of the target protein. The Strep tag is also made up of 8 amino acids that will not disturb the protein’s functions. We chose the FLAG tag because it is perfectly cleavable. Info on LL-37 and N-terminus? The protein will be purified in a Strep-Tactin® Sepharose® column. In order to address the L-DOPA adhesive L-DOPA component, our final step is to elute with a base to reduce the amount of the anti-biofouling peptide that sticks to the column due to L-DOPA adhesion (Figure 7).
|