Team:Bielefeld-CeBiTec/Results/CO2-fixation

From 2014.igem.org

(Difference between revisions)
Line 39: Line 39:
  <div id="text">
  <div id="text">
   <p>
   <p>
-
The particular aim of the second module is to implement the carbon dioxide fiaxtion in <i>E.&nbsp;coli</i>. Therefore we selected the Calvin cycle and used a bottom up approach. All components, like the <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Results/CO2-fixation/Calvin-Cycle" target="_blank">sedoheptulose-1,7-bisphosphatase</a>, the <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Results/CO2-fixation/RuBisCO" target="_blank">ribulose-1,5-bisphosphate carboxylase/oxygenase</a>  (RuBisCO) and the mechanism of <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Results/CO2-fixation/RuBisCO" target="_blank">carbon dioxide fixation</a> were tested separetly in various experiments. The RubisCO is known to function best under high CO2 concentration. To accomplish optimal conditions for the RubisCO in a very local enviroment a microcompartiment from <i>Halothiobacillus&nbsp;neapolitanus</i>, which is called carboxysome, was constructed in <i>E.&nbsp;coli</i>.  
+
The particular aim of the second module is to implement the carbon dioxide fiaxtion in <i>E.&nbsp;coli</i>. Therefore we selected the Calvin cycle and used a bottom up approach. All components, like the <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Results/CO2-fixation/Calvin-Cycle" target="_blank">sedoheptulose-1,7-bisphosphatase</a>, the phosphoribulokinase (<i>prkA</i>) , the <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Results/CO2-fixation/RuBisCO" target="_blank">ribulose-1,5-bisphosphate carboxylase/oxygenase</a>  (RuBisCO) and the mechanism of <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Results/CO2-fixation/RuBisCO" target="_blank">carbon dioxide fixation</a> were tested separetly in various experiments. The RubisCO is known to function best under high CO2 concentration. To accomplish optimal conditions for the RubisCO in a very local enviroment a microcompartiment from <i>Halothiobacillus&nbsp;neapolitanus</i>, which is called carboxysome, was constructed in <i>E.&nbsp;coli</i>.  
   </p>
   </p>
<br>
<br>

Revision as of 22:15, 17 October 2014


Module II - Carbon Dioxide (CO2) Fixation

The particular aim of the second module is to implement the carbon dioxide fiaxtion in E. coli. Therefore we selected the Calvin cycle and used a bottom up approach. All components, like the sedoheptulose-1,7-bisphosphatase, the phosphoribulokinase (prkA) , the ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and the mechanism of carbon dioxide fixation were tested separetly in various experiments. The RubisCO is known to function best under high CO2 concentration. To accomplish optimal conditions for the RubisCO in a very local enviroment a microcompartiment from Halothiobacillus neapolitanus, which is called carboxysome, was constructed in E. coli.



Figure 1: Schematic representation of the Calvin cylce. The reactions shown in green can be catalyzed by enzymes that naturally exist in E. coli, while the red ones need to be expressed heterologous to enable the whole Calvin cycle in E. coli.