Team:Warsaw/Achievements
From 2014.igem.org
(Difference between revisions)
Line 505: | Line 505: | ||
</table> | </table> | ||
+ | |||
+ | <br><br><br> | ||
<h3>BBa_K1459001 - PmrA</h3></br> | <h3>BBa_K1459001 - PmrA</h3></br> | ||
<b>Protein name:</b>PmrA</br> | <b>Protein name:</b>PmrA</br> | ||
Line 536: | Line 538: | ||
[2] M. Wonsten, L. Kox, S. Chamnogpol, F. Soncini, E. Groisman,<i>A Signal Transduction System that Responds to Extracellular Iron</i>,<i>Cell</i>, Vol. 103, 113–125, September 29, 2000</br> | [2] M. Wonsten, L. Kox, S. Chamnogpol, F. Soncini, E. Groisman,<i>A Signal Transduction System that Responds to Extracellular Iron</i>,<i>Cell</i>, Vol. 103, 113–125, September 29, 2000</br> | ||
SENT TO REGISTRY</br> | SENT TO REGISTRY</br> | ||
+ | |||
+ | <br><br><br> | ||
<h3>BBa_K1459002 - C-term of PmrB from <i>Salmonella enterica</i></h3></br> | <h3>BBa_K1459002 - C-term of PmrB from <i>Salmonella enterica</i></h3></br> | ||
PmrB is a transmembrane kinase. After binding iron (III) ion by binding peptide on extracellular loop, it's intracellular domain gains kinase activity and phosphorylates PmrA (BBa_K1459000).</br> | PmrB is a transmembrane kinase. After binding iron (III) ion by binding peptide on extracellular loop, it's intracellular domain gains kinase activity and phosphorylates PmrA (BBa_K1459000).</br> | ||
Line 544: | Line 548: | ||
[2] M. Wonsten, L. Kox, S. Chamnogpol, F. Soncini, E. Groisman,<i>A Signal Transduction System that Responds to Extracellular Iron</i>,<i>Cell</i>, Vol. 103, 113–125, September 29, 2000</br> | [2] M. Wonsten, L. Kox, S. Chamnogpol, F. Soncini, E. Groisman,<i>A Signal Transduction System that Responds to Extracellular Iron</i>,<i>Cell</i>, Vol. 103, 113–125, September 29, 2000</br> | ||
SENT TO REGISTRY</br> | SENT TO REGISTRY</br> | ||
+ | |||
+ | <br><br><br> | ||
<h3>BBa_K1459003 - PmrA-PmrB(LBT) two-component system</h3></br> | <h3>BBa_K1459003 - PmrA-PmrB(LBT) two-component system</h3></br> | ||
PmrA-PmrB two-component system is native to <i>Salmonella enterica</i> and in its native state the system is responsible for chemotaxis. PmrB is a transmembrane protein with iron binding peptide on its extracellular loop. When PmrB binds iron (III) iron, the intracellular domain gains kinase activity and phosphorylates PmrA, which subsequently binds to pmrC promoter and induces expression of chemotaxis CheZ protein. In this part iron binding tag on the extracellular loop was exchanged with a lanthanide binding tag (LBT), to allow PmrA-PmrB two-component system to respond to lanthanide ions.</br> | PmrA-PmrB two-component system is native to <i>Salmonella enterica</i> and in its native state the system is responsible for chemotaxis. PmrB is a transmembrane protein with iron binding peptide on its extracellular loop. When PmrB binds iron (III) iron, the intracellular domain gains kinase activity and phosphorylates PmrA, which subsequently binds to pmrC promoter and induces expression of chemotaxis CheZ protein. In this part iron binding tag on the extracellular loop was exchanged with a lanthanide binding tag (LBT), to allow PmrA-PmrB two-component system to respond to lanthanide ions.</br> | ||
Line 550: | Line 556: | ||
Lanthanide Ions</i>, <i>J.Am.Chem.Soc.</i> 2013, 135, 2037−2039</br> | Lanthanide Ions</i>, <i>J.Am.Chem.Soc.</i> 2013, 135, 2037−2039</br> | ||
[2] M. Wonsten, L. Kox, S. Chamnogpol, F. Soncini, E. Groisman,<i>A Signal Transduction System that Responds to Extracellular Iron</i>,<i>Cell</i>, Vol. 103, 113–125, September 29, 2000</br> | [2] M. Wonsten, L. Kox, S. Chamnogpol, F. Soncini, E. Groisman,<i>A Signal Transduction System that Responds to Extracellular Iron</i>,<i>Cell</i>, Vol. 103, 113–125, September 29, 2000</br> | ||
+ | |||
+ | <br><br><br> | ||
<h3>BBa_K1459004 - PmrA-PmrB(LBT) with terminator (BBa_B1006)</h3></br> | <h3>BBa_K1459004 - PmrA-PmrB(LBT) with terminator (BBa_B1006)</h3></br> | ||
PmrA-PmrB two-component system is native to <i>Salmonella enterica</i> and in its native state it is responsible for chemotaxis. PmrB is a transmembrane protein with iron binding peptide on its extracellular loop. When PmrB binds iron (III) iron, its intracellular domain gains kinase activity and phosphorylates PmrA, which subsequently binds to pmrC promoter and induces expression of chemotaxis CheZ protein. In this part iron binding tag on the extracellular loop was exchanged with a lanthanide binding tag (LBT), to allow PmrA-PmrB two-component system to respond to lanthanide ions.</br> | PmrA-PmrB two-component system is native to <i>Salmonella enterica</i> and in its native state it is responsible for chemotaxis. PmrB is a transmembrane protein with iron binding peptide on its extracellular loop. When PmrB binds iron (III) iron, its intracellular domain gains kinase activity and phosphorylates PmrA, which subsequently binds to pmrC promoter and induces expression of chemotaxis CheZ protein. In this part iron binding tag on the extracellular loop was exchanged with a lanthanide binding tag (LBT), to allow PmrA-PmrB two-component system to respond to lanthanide ions.</br> | ||
Line 557: | Line 565: | ||
[2] M. Wonsten, L. Kox, S. Chamnogpol, F. Soncini, E. Groisman,<i>A Signal Transduction System that Responds to Extracellular Iron</i>,<i>Cell</i>, Vol. 103, 113–125, September 29, 2000</br> | [2] M. Wonsten, L. Kox, S. Chamnogpol, F. Soncini, E. Groisman,<i>A Signal Transduction System that Responds to Extracellular Iron</i>,<i>Cell</i>, Vol. 103, 113–125, September 29, 2000</br> | ||
SENT TO REGISTRY</br> | SENT TO REGISTRY</br> | ||
+ | |||
+ | <br><br><br> | ||
<h3>BBa_K1459005 - PmrA-PmrB(N-term)</h3></br> | <h3>BBa_K1459005 - PmrA-PmrB(N-term)</h3></br> | ||
This is N-terminal part of PmrA-PmrB two-component system native to <i>Salmonella enterica</i>. PmrA-PmrB two-component system is native to Salmonella enterica and in its native state it is responsible for chemotaxis. PmrB is a transmembrane protein with iron binding peptide on its extracellular loop. When PmrB binds iron (III) iron, it's intracellular domain gains kinase activity and phosphorylates PmrA, which subsequently binds to pmrC promoter and induces expression of chemotaxis CheZ protein. In this part iron binding tag on the extracellular loop was exchanged with a lanthanide binding tag (LBT), to allow PmrA-PmrB two-component system to respond to lanthanide ions. In this part, PmrB protein is truncated just before iron binding tag, which enables one to put any desired tag between two parts of PmrB, to construct a detecting system based on PmrA-PmrB system.</br> | This is N-terminal part of PmrA-PmrB two-component system native to <i>Salmonella enterica</i>. PmrA-PmrB two-component system is native to Salmonella enterica and in its native state it is responsible for chemotaxis. PmrB is a transmembrane protein with iron binding peptide on its extracellular loop. When PmrB binds iron (III) iron, it's intracellular domain gains kinase activity and phosphorylates PmrA, which subsequently binds to pmrC promoter and induces expression of chemotaxis CheZ protein. In this part iron binding tag on the extracellular loop was exchanged with a lanthanide binding tag (LBT), to allow PmrA-PmrB two-component system to respond to lanthanide ions. In this part, PmrB protein is truncated just before iron binding tag, which enables one to put any desired tag between two parts of PmrB, to construct a detecting system based on PmrA-PmrB system.</br> | ||
Line 564: | Line 574: | ||
[2] M. Wonsten, L. Kox, S. Chamnogpol, F. Soncini, E. Groisman,<i>A Signal Transduction System that Responds to Extracellular Iron</i>,<i>Cell</i>, Vol. 103, 113–125, September 29, 2000</br> | [2] M. Wonsten, L. Kox, S. Chamnogpol, F. Soncini, E. Groisman,<i>A Signal Transduction System that Responds to Extracellular Iron</i>,<i>Cell</i>, Vol. 103, 113–125, September 29, 2000</br> | ||
SENT TO REGISTRY</br> | SENT TO REGISTRY</br> | ||
+ | |||
+ | <br><br><br> | ||
<h3>BBa_K1459006 - pmrC</h3></br> | <h3>BBa_K1459006 - pmrC</h3></br> | ||
This is pmrC promoter native to <i>Salmonella enterica</i>. PmrA-PmrB two-component system is native to <i>Salmonella enterica</i> and in its native state it is responsible for chemotaxis. PmrB is a transmembrane protein with iron binding peptide on its extracellular loop. When PmrB binds iron (III) iron, the intracellular domain gains kinase activity and phosphorylates PmrA, which subsequently binds to pmrC promoter and induces expression of chemotaxis CheZ protein. In this part iron binding tag on the extracellular loop was exchanged with a lanthanide binding tag (LBT), to allow PmrA-PmrB two-component system to respond to lanthanide ions.</br> | This is pmrC promoter native to <i>Salmonella enterica</i>. PmrA-PmrB two-component system is native to <i>Salmonella enterica</i> and in its native state it is responsible for chemotaxis. PmrB is a transmembrane protein with iron binding peptide on its extracellular loop. When PmrB binds iron (III) iron, the intracellular domain gains kinase activity and phosphorylates PmrA, which subsequently binds to pmrC promoter and induces expression of chemotaxis CheZ protein. In this part iron binding tag on the extracellular loop was exchanged with a lanthanide binding tag (LBT), to allow PmrA-PmrB two-component system to respond to lanthanide ions.</br> | ||
Line 570: | Line 582: | ||
Lanthanide Ions</i>, <i>J.Am.Chem.Soc.</i> 2013, 135, 2037−2039</br> | Lanthanide Ions</i>, <i>J.Am.Chem.Soc.</i> 2013, 135, 2037−2039</br> | ||
[2] M. Wonsten, L. Kox, S. Chamnogpol, F. Soncini, E. Groisman,<i>A Signal Transduction System that Responds to Extracellular Iron</i>,<i>Cell</i>, Vol. 103, 113–125, September 29, 2000</br> | [2] M. Wonsten, L. Kox, S. Chamnogpol, F. Soncini, E. Groisman,<i>A Signal Transduction System that Responds to Extracellular Iron</i>,<i>Cell</i>, Vol. 103, 113–125, September 29, 2000</br> | ||
+ | |||
+ | <br><br><br> | ||
<h3>BBa_K1459008 - pmrC-GFP-terminator</h3></br> | <h3>BBa_K1459008 - pmrC-GFP-terminator</h3></br> | ||
This is pmrC promoter from <i>Salmonella enterica</i>, with subsequent GFP and BBa_B1006 terminator. This part is one part of PmrA-PmrB detecting system. Upon phosphorylation by PmrB, PmrA binds to pmrC and induces expression of GFP.</br> | This is pmrC promoter from <i>Salmonella enterica</i>, with subsequent GFP and BBa_B1006 terminator. This part is one part of PmrA-PmrB detecting system. Upon phosphorylation by PmrB, PmrA binds to pmrC and induces expression of GFP.</br> | ||
Line 577: | Line 591: | ||
[2] M. Wonsten, L. Kox, S. Chamnogpol, F. Soncini, E. Groisman,<i>A Signal Transduction System that Responds to Extracellular Iron</i>,<i>Cell</i>, Vol. 103, 113–125, September 29, 2000</br> | [2] M. Wonsten, L. Kox, S. Chamnogpol, F. Soncini, E. Groisman,<i>A Signal Transduction System that Responds to Extracellular Iron</i>,<i>Cell</i>, Vol. 103, 113–125, September 29, 2000</br> | ||
SENT TO REGISTRY</br> | SENT TO REGISTRY</br> | ||
+ | |||
+ | <br><br><br> | ||
<h3>BBa_K1459010 - PmrB(LBT)</h3></br> | <h3>BBa_K1459010 - PmrB(LBT)</h3></br> | ||
<b>Protein name:</b>PmrB</br> | <b>Protein name:</b>PmrB</br> | ||
Line 610: | Line 626: | ||
[2] M. Wonsten, L. Kox, S. Chamnogpol, F. Soncini, E. Groisman,<i>A Signal Transduction System that Responds to Extracellular Iron</i>,<i>Cell</i>, Vol. 103, 113–125, September 29, 2000</br> | [2] M. Wonsten, L. Kox, S. Chamnogpol, F. Soncini, E. Groisman,<i>A Signal Transduction System that Responds to Extracellular Iron</i>,<i>Cell</i>, Vol. 103, 113–125, September 29, 2000</br> | ||
SENT TO REGISTRY</br> | SENT TO REGISTRY</br> | ||
+ | |||
+ | <br><br><br> | ||
<h3>BBa_K1459011 - PmrB(N-term)</h3></br> | <h3>BBa_K1459011 - PmrB(N-term)</h3></br> | ||
PmrA-PmrB two-component system is native to <i>Salmonella enterica</i> and in its native state it is responsible for chemotaxis. PmrB is a transmembrane protein with iron binding peptide on its extracellular loop. When PmrB binds iron (III) iron, the intracellular domain gains kinase activity and phosphorylates PmrA, which subsequently binds to pmrC promoter and induces expression of chemotaxis CheZ protein.</br> | PmrA-PmrB two-component system is native to <i>Salmonella enterica</i> and in its native state it is responsible for chemotaxis. PmrB is a transmembrane protein with iron binding peptide on its extracellular loop. When PmrB binds iron (III) iron, the intracellular domain gains kinase activity and phosphorylates PmrA, which subsequently binds to pmrC promoter and induces expression of chemotaxis CheZ protein.</br> | ||
Line 618: | Line 636: | ||
[2] M. Wonsten, L. Kox, S. Chamnogpol, F. Soncini, E. Groisman,<i>A Signal Transduction System that Responds to Extracellular Iron</i>,<i>Cell</i>, Vol. 103, 113–125, September 29, 2000</br> | [2] M. Wonsten, L. Kox, S. Chamnogpol, F. Soncini, E. Groisman,<i>A Signal Transduction System that Responds to Extracellular Iron</i>,<i>Cell</i>, Vol. 103, 113–125, September 29, 2000</br> | ||
SENT TO REGISTRY</br> | SENT TO REGISTRY</br> | ||
+ | |||
+ | <br><br><br> | ||
<h3>BBa_K1459012 - SENG lanthanide binding tag</h3></br> | <h3>BBa_K1459012 - SENG lanthanide binding tag</h3></br> | ||
This is a DNA sequence coding lanthanide binding tag described in literature. Its literatural dissociation constants are as follows:</br> | This is a DNA sequence coding lanthanide binding tag described in literature. Its literatural dissociation constants are as follows:</br> | ||
Line 624: | Line 644: | ||
[1] J. M. Langdon, <i>Development of Lanthanide-Binding Tags (LBTs) as Powerful and Versatile PeptidesFor Use in Studies of Proteins and Protein Interactions</i>, © 2008 Massachusetts Institute of Technology | [1] J. M. Langdon, <i>Development of Lanthanide-Binding Tags (LBTs) as Powerful and Versatile PeptidesFor Use in Studies of Proteins and Protein Interactions</i>, © 2008 Massachusetts Institute of Technology | ||
All rights reserved</br> | All rights reserved</br> | ||
+ | |||
+ | <br><br><br> | ||
<h3>BBa_K1459013 - wSE3 lanthanide binding tag</h3></br> | <h3>BBa_K1459013 - wSE3 lanthanide binding tag</h3></br> | ||
This is sequence of DNA coding wSE3 lanthanide binding tag. It's dissociation constants are as follows:</br> | This is sequence of DNA coding wSE3 lanthanide binding tag. It's dissociation constants are as follows:</br> | ||
Line 629: | Line 651: | ||
[1] J. M. Langdon, <i>Development of Lanthanide-Binding Tags (LBTs) as Powerful and Versatile PeptidesFor Use in Studies of Proteins and Protein Interactions</i>, © 2008 Massachusetts Institute of Technology | [1] J. M. Langdon, <i>Development of Lanthanide-Binding Tags (LBTs) as Powerful and Versatile PeptidesFor Use in Studies of Proteins and Protein Interactions</i>, © 2008 Massachusetts Institute of Technology | ||
All rights reserved</br> | All rights reserved</br> | ||
+ | |||
+ | <br><br><br> | ||
<h3>BBa_K1459014 - Lanthanide Binding Tag</h3></br> | <h3>BBa_K1459014 - Lanthanide Binding Tag</h3></br> | ||
This is DNA sequence coding a lanthanide binding tag. This one is one of the best described LBTs in literature, with dissociation constants following:</br> | This is DNA sequence coding a lanthanide binding tag. This one is one of the best described LBTs in literature, with dissociation constants following:</br> | ||
Line 643: | Line 667: | ||
[1] M. Nitz, M. Sherawat, K. J. Franz, E. Peisach, K. N. Allen, B. Imperiali, <i>Structural Origin of the High Affinity of a Chemically Evolved Lanthanide-Binding Peptide</i> | [1] M. Nitz, M. Sherawat, K. J. Franz, E. Peisach, K. N. Allen, B. Imperiali, <i>Structural Origin of the High Affinity of a Chemically Evolved Lanthanide-Binding Peptide</i> | ||
, <i>Angew.Chem.Int.Ed.</i> 2004, 43, 3682–368</br> | , <i>Angew.Chem.Int.Ed.</i> 2004, 43, 3682–368</br> | ||
+ | |||
+ | <br><br><br> | ||
<h3>BBa_K1459015 - 1L2Y short peptide</h3></br> | <h3>BBa_K1459015 - 1L2Y short peptide</h3></br> | ||
This is DNA sequence coding short peptide (PDB 1L2Y) is highly structured in water and could provide a structural foundation for small binding tags, such as we were planning to use it.</br> | This is DNA sequence coding short peptide (PDB 1L2Y) is highly structured in water and could provide a structural foundation for small binding tags, such as we were planning to use it.</br> |
Revision as of 20:37, 17 October 2014
Achievements
Parts
Registry number | Construct name | Gene lenght [nts] | Protein lenght [aa] | Physical DNA sent | Construct type product | Native host | Plasmid | Standard |
BBa_K1459001 | PmrA | 669 | 222 | yes | protein | Salmonella spp. | pSB1C3 | RFC 10 |
BBa_K1459016 | PmrB WT (Fe3+) | 1071 | 356 | no | protein | Salmonella spp. | pSB1C3 | RFC 10 |
BBa_K1459010 | PmrB (MUT) | 1029 | 343 | yes | protein | Salmonella spp. | pSB1C3 | RFC 10 |
BBa_K1459003 | PmrA-PmrB | 1749 | 222 + 356 | no | 2 proteins | Salmonella spp. | pSB1C3 | RFC 10 |
BBa_K1459004 | PmrA-PmrB(MUT)-terminator | 1791 | 222+343(two proteins) | yes | proteins + transcription terminator | Salmonella spp. | pSB1C3 | RFC 10 |
BBa_K1459011 | PmrB N-terminus | 102 | 34 | yes | protein domain | Salmonella spp. | pSB1C3 | RFC 25 |
BBa_K1459009 | PmrB C-terminus | 882 | 294 | yes | protein domain | Salmonella spp. | pSB1C3 | RFC 25 |
BBa_K1459005 | PmrA-PmrB N-terminus | 782 | 220 + 34 | yes | protein and protein domain | Salmonella spp. | pSB1C3 | RFC 25 |
BBa_K1459006 | pmrC promoter | 46 | - | no | promoter | Salmonella spp. | pSB1C3 | RFC 10 |
BBa_K1459017 | pmrC-GFP | 1119 | 238 | no | promoter and protein | Salmonella spp. | pSB1C3 | RFC 10 |
BBa_K1459008 | pmrC-GFP-terminator | 1166 | 238 | yes | promoter and protein and terminator | Salmonella spp. | pSB1C3 | RFC 10 |
BBa_K1459012 | SENG lanthanide binding tag | 60 | 20 | no | peptide | synthetic | pSB1C3 | RFC 25 |
BBa_K1459013 | wSE3 lanthanide binding tag | 51 | 17 | no | peptide | synthetic | pSB1C3 | RFC 25 |
BBa_K1459014 | Lanthanide Binding Tag | 51 | 17 | no | peptide | synthetic | pSB1C3 | RFC 25 |
BBa_K1459015 | 1L2Y short peptide | 66 | 22 | no | peptide | synthetic | pSB1C3 | RFC 25 |