Team:Oxford/biosensor optimisation
From 2014.igem.org
(Difference between revisions)
Line 197: | Line 197: | ||
As described above, the ideal biosensor is binary and its fluorescence response can only take two values. This relies on the system having two features- a fast response time to concentration changes and a large amplitude of response. Having previously established the ideal concentrations of DCM and ATC <u>(see above)</u> for the biosensor, our next task was to predict what combination of controllable variables would result in the ideal binary behaviour. This is a very important step in synthetic biology because it allows us to crudely optimise the design before construction even begins. To test the response of our biosensor, we used a step function of DCM the initial and sudden contact of DCM with our bacteria and then removing DCM through <u>spinning the cells(?)</u>. In the real system, the DCM input would be a step in the curve and then a gradual negative ramp as the DCM was degraded. | As described above, the ideal biosensor is binary and its fluorescence response can only take two values. This relies on the system having two features- a fast response time to concentration changes and a large amplitude of response. Having previously established the ideal concentrations of DCM and ATC <u>(see above)</u> for the biosensor, our next task was to predict what combination of controllable variables would result in the ideal binary behaviour. This is a very important step in synthetic biology because it allows us to crudely optimise the design before construction even begins. To test the response of our biosensor, we used a step function of DCM the initial and sudden contact of DCM with our bacteria and then removing DCM through <u>spinning the cells(?)</u>. In the real system, the DCM input would be a step in the curve and then a gradual negative ramp as the DCM was degraded. | ||
<br><br> | <br><br> | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
Revision as of 19:19, 17 October 2014