Team:HUST-China/Protocol
From 2014.igem.org
Line 220: | Line 220: | ||
<p>Step 4: Expression of Protein<br /> | <p>Step 4: Expression of Protein<br /> | ||
Plasmid pET28a(+)-oprF-1/oprF-2/RTS/flA was transformed into E. coli BL21(DE3) and we get for protein expression analysis. The strains were grown in Luria broth containing 100ug/ml kanamycin at 37℃, 250rpm until an absorbance of 0.4–0.6 at 600 nm was reached. We then added IPTG to 0.5mM and continued the incubation at 28℃ overnight to induce the overexpression of OprF-CBP/OprF-GS-CBP. The cells were collected, suspended with 10mM imidazole containing 0.1mM protease inhibitor PMSF and then disrupted using Selecta Sonopuls. After centrifugation, the sediment was treated with 1*SDS gel loading buffer and kept in boiling water for 5 minutes and applied to SDS-PAGE. </p> | Plasmid pET28a(+)-oprF-1/oprF-2/RTS/flA was transformed into E. coli BL21(DE3) and we get for protein expression analysis. The strains were grown in Luria broth containing 100ug/ml kanamycin at 37℃, 250rpm until an absorbance of 0.4–0.6 at 600 nm was reached. We then added IPTG to 0.5mM and continued the incubation at 28℃ overnight to induce the overexpression of OprF-CBP/OprF-GS-CBP. The cells were collected, suspended with 10mM imidazole containing 0.1mM protease inhibitor PMSF and then disrupted using Selecta Sonopuls. After centrifugation, the sediment was treated with 1*SDS gel loading buffer and kept in boiling water for 5 minutes and applied to SDS-PAGE. </p> | ||
- | + | <img src="https://static.igem.org/mediawiki/2014/1/1f/HUST_protocol_04.png"></img> | |
- | <img src="https://static.igem.org/mediawiki/2014/1/1f/HUST_protocol_04.png" | + | |
<p>Fig 1-4 Expression of Protein</p> | <p>Fig 1-4 Expression of Protein</p> | ||
<p>Step 5: Surface Displaying Copper Ions<br /> | <p>Step 5: Surface Displaying Copper Ions<br /> | ||
Line 275: | Line 274: | ||
<p>Assemble all the elements via standard restrict sites:</p> | <p>Assemble all the elements via standard restrict sites:</p> | ||
<p>1. PCR: pPcoA (add EcoRI, XbaI, SpeI and PstI restriction sites)</p> | <p>1. PCR: pPcoA (add EcoRI, XbaI, SpeI and PstI restriction sites)</p> | ||
- | <img src="https://static.igem.org/mediawiki/2014/c/c9/HUST_protocol_05.png | + | <img src="https://static.igem.org/mediawiki/2014/c/c9/HUST_protocol_05.png"></img> |
</html> | </html> |
Revision as of 13:43, 17 October 2014
Our project is divided into four parts:
Part 1: The Construction of the Worker System
Step 1: Gene Cloning
To find the optimal temperature for oprF and RTS operon amplification, we set a gradient in temperature. Then we amplified oprF and RTS sequence by PCR in 58℃. The sequence was stored in -20℃. The PCR conditions were listed as table 1-1.
Table 1-1 : Gradient PCR System
Components(50μl) | Volume(ml) |
PrimerStar Buffer | 10 |
dNTPs(2.5mM) | 5 |
Primer-F(10μM) | 1.5 |
Primer-R(10μM) | 1.5 |
Template | 1.5 |
PrimerStar | 0.5 |
ddH2O | 30 |
Step 2: Improvement of oprF
We choose the 188th and 196th amino acid of OprF as anchor points. Designing primers (Table 2-1)to clone the target fragment, and then add the GS linker and the gene fragment coding CBP at the end of the target fragment.
The protein regarding the 188th amino acid as anchor point and added GS linker was named as OprF-1 and the protein regarding the 196th amino acid as anchor point and not added GS linker was named as OprF-2.
Table 1-2 Primers of Improving oprF
Primer | Sequence(5’→3’) |
oprF-CBP-F | CCGGAATTCAACTGAAGAACACCTT |
oprF-CBP-R1 | CCAGCCGCCATGATGCGGGGAAACCGGTTCCGGAGCCGGAGCGGC |
oprF-CBP-R2 | ATAGTTTAGCGGCCGCCGGCCAGCCGCCATGATGCGGGGA |
oprF-GS-F | CCGGAATTCAACTGAAGAACACCTT |
oprF-GS-R1 | TGAACCTCCGCCACCTTTCGAACCACCGAAGTTGAAG |
oprF-GS-R2 | CCAGCCGCCATGATGCGGGGATGAACCTCCGCCACC |
oprF-GS-R3 | ATAGTTTAGCGGCCGCCGGCCAGCCGCCATGATGCGGGGA |
Step 3: Construction of Vectors
Digest pET28a vector to donate a skeleton with EcoRI and NotI. Retrieve and purify the target genes with kits produced by Omega.
Afterwards, pET28a(+) vector, gene oprF-1/oprF-2/RTS operon were linked together to recombine a new vector: pET28a(+)-oprF-1/oprF-2/RTS. The reaction system for digestion and conjunction were listed in the table 1-3, 1-4.
Table 1-3 Reaction System for Digestion
Components(50μl) | Volume(μl) |
10×H Buffer | 5 |
BSA | 5 |
EcoRI | 2.5 |
NotI | 2.5 |
Fragment | 25 |
ddH2O | 10 |
Conditions | 37℃ 1h |
Table 1-4 for Gene Conjunction
Components |
System components(10μl) |
Solution I | 5 |
Insert | 4.5 |
Vector |
0.5 |
Conditions |
16℃ 1h |
Fig 1-1 Digested gene and plasmid
Step 3: Transferring the Plasmids into E. coli BL21 Strain
The recombined plasmids were transferred into BL21 strain, which later was grew in LB culture medium with 100μg/ml Kanamycin, 37℃ for one night. To ensure the conjunctions were correct, we confirmed the vectors by colonial PCR and gel electrophoresis, following the digestion of EcoRI and NotI to see the possibilities of reverse connection. The conditions for colonial PCR and dual-enzyme digestion reaction were listed in the table 1-5, 1-6.
Table 1-5 Reaction System Colonial PCR
Components(10μl) |
Volume(ml) |
2×Ex Taq Mix |
5 |
Primer-F(10μmol/L) |
0.3 |
Primer-R(10μmol/L) |
0.3 |
Template |
0.3 |
H2O |
4.1 |
Table 1-6 Conditions for dual-enzyme digestion reaction (37 ℃ 1h)
Components(10μl) | Volume(μl) |
10×H Buffer |
1 |
BSA |
1 |
EcoRI |
0.5 |
NotI |
0.5 |
ddH2O |
7 |
Condition |
37 ℃ 1h |
Fig 1-2 Gel images of novel plasmids with OprF-CBP/GS-CBP testified results
Fig 1-3 Gel images of novel plasmids with RTS testified results
The E. coli BL21(DE3) strain transformed with pET28a(+)-flA was kindly donated by Prof. David O'Hagan and Prof. James H. Naismith from University of St Andrews, Saint Andrews, Scotland, United Kingdom.
Step 4: Expression of Protein
Plasmid pET28a(+)-oprF-1/oprF-2/RTS/flA was transformed into E. coli BL21(DE3) and we get for protein expression analysis. The strains were grown in Luria broth containing 100ug/ml kanamycin at 37℃, 250rpm until an absorbance of 0.4–0.6 at 600 nm was reached. We then added IPTG to 0.5mM and continued the incubation at 28℃ overnight to induce the overexpression of OprF-CBP/OprF-GS-CBP. The cells were collected, suspended with 10mM imidazole containing 0.1mM protease inhibitor PMSF and then disrupted using Selecta Sonopuls. After centrifugation, the sediment was treated with 1*SDS gel loading buffer and kept in boiling water for 5 minutes and applied to SDS-PAGE.
Fig 1-4 Expression of Protein
Step 5: Surface Displaying Copper Ions
To identify that whether our OprF has anchored on the cell membrane of E. coli, we performed immunofluorescence assay. HA tag was added to the N-terminal of OprF-CBP so that the recombinant protein OprF-CBP-HA can be specifically recognized by anti-HA antibody. When FITC labeled anti-IgG antibody was used as the secondary antibody and interacted with the primary antibody, green fluorescence could be observed in the cell membrane of E. coli under the fluorescent microscope.
Part 2: The Construction of the Instructor System
All the parts except PpcoA we used to construct E. instructor are from kits in Distribution 2013.They are listed in table2-1.
Table 2-1 Parts from Kits in Distribution 2013
Name | Parts | Well | Short Description |
CII | BBa_P0153 | 9A(plate3,2013) | Protein |
CI | BBa_C0051 | 3A(plate3,2013) | Protein |
RFP | BBa_E1010 | 18F(plate5,2013) | engineered mutant of red fluorescent protein |
GFP | BBa_E0044 | 14G(plate5,2013) | mGFP mut3b+AAV |
PR | BBa_R0051 | 6K(plate5,2013) | CI regulated promoter |
PRE | BBa_R0053 | 6M(plate5,2013) | CII regulated promoter |
Step1: Plasmid construction:
Assemble all the elements via standard restrict sites:
1. PCR: pPcoA (add EcoRI, XbaI, SpeI and PstI restriction sites)