Team:Toulouse/Modelling

From 2014.igem.org

(Difference between revisions)
Line 127: Line 127:
Modeling is a tool used to simplify and study systems. It helps us to predict behavior thanks to bibliographic or experimental informations.</br>
Modeling is a tool used to simplify and study systems. It helps us to predict behavior thanks to bibliographic or experimental informations.</br>
-
The following modelisation focuses on the development of our engineered bacterium (called SubtiTree) in tree. The bacterial growth in trees seems to be unknown, thus we must infer <i>Bacillus subtilis</i> behavior.</p>
+
The following modelisation focuses on the development of our engineered bacterium (called SubtiTree) in trees. The bacterial growth in trees seems to be unknown, thus we must infer <i>Bacillus subtilis'</i> behavior.</p>
<p class="title1">
<p class="title1">
Line 138: Line 138:
<p class="texte">
<p class="texte">
-
<i>Bacillus subtilis</i> is a tree endophyte strain. A study showed that <i>Bacillus subtilis</i> could develop and fully colonize a tree, reaching a concentration of 10⁵ cells per gram of fresh plant. We need to know in which conditions the growth of <i>B. subtilis</i> is optimum in a tree and if the weather can stop its development during winter. Therefore we decided to work on the <i>Bacillus subtilis</i> growth in function of the temperature during the year.  
+
<i>Bacillus subtilis</i> is a tree endophyte strain. A study showed that <i>Bacillus subtilis</i> could develop and fully colonize a tree, reaching a concentration of 10⁵ cells per gram of fresh plant. We need to know in which conditions the growth of <i>B. subtilis</i> is optimum in a tree and if the weather can stop its development during winter. Therefore we decided to work on the <i>Bacillus subtilis'</i> growth in function of the temperature during the year.  
<br>Modeling bacterial growth in a tree section generates some difficulties. We need to know the distance between two tree extremities (treetops and root) or the speed sap flow. However the speed sap flow can vary with temperature during the day and seasons cause of the type of sap (phloem, xylem). Furthermore a tree is not an homogeneous system: its roots, trunk and branches do not contain the same amount of sap and wood. <br>The average speed of the plane tree sap is 2.4m/h, which means that in a day the sap of a 30m tree will flow from one extremity to the other. Tree is reduced to a bioreactor.
<br>Modeling bacterial growth in a tree section generates some difficulties. We need to know the distance between two tree extremities (treetops and root) or the speed sap flow. However the speed sap flow can vary with temperature during the day and seasons cause of the type of sap (phloem, xylem). Furthermore a tree is not an homogeneous system: its roots, trunk and branches do not contain the same amount of sap and wood. <br>The average speed of the plane tree sap is 2.4m/h, which means that in a day the sap of a 30m tree will flow from one extremity to the other. Tree is reduced to a bioreactor.
</p>
</p>
Line 145: Line 145:
<ol class="list1">
<ol class="list1">
<li>
<li>
-
According to the publication of <b>Xianling Ji</b> (See References), after six months of <i>Bacillus subtilis</i> growth in a tree, bacteria cells reach a concentration of 10⁵ cells per gram of fresh plant. We assume that 10⁵ cells/g is the maximum concentration.
+
According to the publication of <b>Xianling Ji</b> (See References), after six months of <i>Bacillus subtilis'</i> growth in a tree, bacteria cells reach a concentration of 10⁵ cells per gram of fresh plant. We assume that 10⁵ cells/g is the maximum concentration.
</li>
</li>
<li>
<li>

Revision as of 21:39, 17 October 2014