Team:StanfordBrownSpelman/BioBricks

From 2014.igem.org

(Difference between revisions)
Line 102: Line 102:
<div class="sub"><img src="https://static.igem.org/mediawiki/2014/d/d2/SBS_iGEM_2014_bioBrick.png"><a href="http://parts.igem.org/Part:BBa_K1499203"><u>Part BBa_K1499203</u></a>: SdaB protein generator without tRNA + 5 amber stops</div>
<div class="sub"><img src="https://static.igem.org/mediawiki/2014/d/d2/SBS_iGEM_2014_bioBrick.png"><a href="http://parts.igem.org/Part:BBa_K1499203"><u>Part BBa_K1499203</u></a>: SdaB protein generator without tRNA + 5 amber stops</div>
<div class="sub"><img src="https://static.igem.org/mediawiki/2014/d/d2/SBS_iGEM_2014_bioBrick.png"><a href="http://parts.igem.org/Part:BBa_K1499205"><u>Part BBa_K1499205</u></a>: MntH with amber stop codon with promoter for expression, no tRNA</div>
<div class="sub"><img src="https://static.igem.org/mediawiki/2014/d/d2/SBS_iGEM_2014_bioBrick.png"><a href="http://parts.igem.org/Part:BBa_K1499205"><u>Part BBa_K1499205</u></a>: MntH with amber stop codon with promoter for expression, no tRNA</div>
-
<div class="sub"><img src="https://static.igem.org/mediawiki/2014/d/d2/SBS_iGEM_2014_bioBrick.png"><a href="http://parts.igem.org/Part:BBa_K1499250"><u>Part BBa_K1499250</u></a>: GFP (E0040) with two amber stop codons</div>
+
<div class="sub"><img src="https://static.igem.org/mediawiki/2014/d/d2/SBS_iGEM_2014_bioBrick.png"><a href="http://parts.igem.org/Part:BBa_K1499250"><u>Part BBa_K1499250</u></a>: GFP (E0040) with two amber stop codons. This GFP contains two stop codons in place of leucine residues. In an amberless cell that also contains supP tRNA, GFP will be translated normally, otherwise, it will be truncated.</div>
-
<div class="sub"><img src="https://static.igem.org/mediawiki/2014/d/d2/SBS_iGEM_2014_bioBrick.png"><a href="http://parts.igem.org/Part:BBa_K1499251"><u>Part BBa_K1499251</u></a>: tRNA supP</div>
+
<div class="sub"><img src="https://static.igem.org/mediawiki/2014/d/d2/SBS_iGEM_2014_bioBrick.png"><a href="http://parts.igem.org/Part:BBa_K1499251"><u>Part BBa_K1499251</u></a>: tRNA supP. This is a UAG-leucine tRNA, so a leucine is added every time a UAG codon is encountered.</div>
-
<div class="sub"><img src="https://static.igem.org/mediawiki/2014/d/d2/SBS_iGEM_2014_bioBrick.png"><a href="http://parts.igem.org/Part:BBa_K1499252"><u>Part BBa_K1499252</u></a>: GFP generator with supP</div>
+
<div class="sub"><img src="https://static.igem.org/mediawiki/2014/d/d2/SBS_iGEM_2014_bioBrick.png"><a href="http://parts.igem.org/Part:BBa_K1499252"><u>Part BBa_K1499252</u></a>: GFP generator with supP. This part has GFP with 2 TAG stop codons in place of leucine residues followed by the supP tRNA which would allow GFP to be properly translated in amberless cells.</div>
<div class="sub"><img src="https://static.igem.org/mediawiki/2014/d/d2/SBS_iGEM_2014_bioBrick.png"><a href="http://parts.igem.org/Part:BBa_K1499253"><u>Part BBa_K1499253</u></a>: aeBlue generator with 3 UAG stops + tRNA</div>
<div class="sub"><img src="https://static.igem.org/mediawiki/2014/d/d2/SBS_iGEM_2014_bioBrick.png"><a href="http://parts.igem.org/Part:BBa_K1499253"><u>Part BBa_K1499253</u></a>: aeBlue generator with 3 UAG stops + tRNA</div>
   </h6>
   </h6>

Revision as of 22:18, 17 October 2014

Stanford–Brown–Spelman iGEM 2014 — BioBricks

Cellulose Acetate
Part BBa_K1499000: This part is for the wssF region of the wss operon isolated from Pseudomonas fluorescens. This operon is responsible for the acetylation of cellulose.
Part BBa_K1499001: This part is for the wssG region of the wss operon isolated from Pseudomonas fluorescens. This operon is responsible for the acetylation of cellulose.
Part BBa_K1499002: This part is for the wssH region of the wss operon isolated from Pseudomonas fluorescens. This operon is responsible for the acetylation of cellulose.
Part BBa_K1499003: This part is for the wssI region of the wss operon isolated from Pseudomonas fluorescens. This operon is responsible for the acetylation of cellulose.
Cellulose Cross Linker
Part BBa_K1499004: This part encodes the expression of a cellulose cross linking protein. It contains two different cellulose binding domains taken from species Clostridium cellulovorans, and a streptavidin domain in between that allows living cells expressing a biotinylated AviTag to attach to the cellulose.
Amberless Hell Cell
Part BBa_K1499201: uracil glycosylase 1
Part BBa_K1499202: uracil glycosylase 2
Part BBa_K1499203: SdaB protein generator without tRNA + 5 amber stops
Part BBa_K1499205: MntH with amber stop codon with promoter for expression, no tRNA
Part BBa_K1499250: GFP (E0040) with two amber stop codons. This GFP contains two stop codons in place of leucine residues. In an amberless cell that also contains supP tRNA, GFP will be translated normally, otherwise, it will be truncated.
Part BBa_K1499251: tRNA supP. This is a UAG-leucine tRNA, so a leucine is added every time a UAG codon is encountered.
Part BBa_K1499252: GFP generator with supP. This part has GFP with 2 TAG stop codons in place of leucine residues followed by the supP tRNA which would allow GFP to be properly translated in amberless cells.
Part BBa_K1499253: aeBlue generator with 3 UAG stops + tRNA
Material Waterproofing
Part BBa_K1499400: This is one version of a chitin binding proteins found in the Polistes dominula saliva that may be responsible for the waterproofing capability of cellulose seen in paper wasp nests.
Part BBa_K1499401: This is another version of a chitin binding proteins found in the Polistes dominula saliva that may be responsible for the waterproofing capability of cellulose seen in paper wasp nests.
Part BBa_K1499402: This is a completely uncharacterized protein from the Polistes dominula transcriptome that may be a major player in the paper wasp's ability to waterproof cellulose.
Biodegradability
Part BBa_K1499500: This is a part that encodes quorum sensing machinery to activate GFP expression. It is fundamentally a combination of two parts, BBa_I13202 and BBa_T9002.
Part BBa_K1499501: This is a part that encodes the endo-1,4-beta-glucanase, or cellulase gene. This protein is a means of breaking down cellulose and is is specific for 1,4-beta linkages in cellulose. It was isolated from Neisseria sicca.
Part BBa_K1499503: This part is the same as Part BBa_K1499500 but has two more terminators between the luxR gene and the luxPR promoter.
Built atop Foundation. Content &amp Development © Stanford–Brown–Spelman iGEM 2014.