Team:NJAU China/Modeling

From 2014.igem.org

(Difference between revisions)
Line 224: Line 224:
<!------------------------------------------->
<!------------------------------------------->
-
<div id="my_contents">
+
<div id="my_contents">   <h1>A model on the process of Cu<sup>2+</sup> elimination by “Copper Terminator”.</h1>
-
    <h1>A model on the process of Cu<sup>2+</sup> elimination by “Copper Terminator”.</h1>
+
   <p>
   <p>
<b>Abstract</b> The process which this equipment “Copper Terminator” uptaking Cu2+ is modeled by ordinary differential equations. Parameters in this models are both inferred from our experiments or obtained from literature. Second order Runge-Kutta method is utilized in simulation and the result shows that Cu2+ is almost entirely  eliminated within 300 minutes from 1mg/L. Finally, Morris sensitivity analysis is carried out and shows that four controllable parameters are most important to the effect of elimination and this demonstrate the possibility of its application. </p>
<b>Abstract</b> The process which this equipment “Copper Terminator” uptaking Cu2+ is modeled by ordinary differential equations. Parameters in this models are both inferred from our experiments or obtained from literature. Second order Runge-Kutta method is utilized in simulation and the result shows that Cu2+ is almost entirely  eliminated within 300 minutes from 1mg/L. Finally, Morris sensitivity analysis is carried out and shows that four controllable parameters are most important to the effect of elimination and this demonstrate the possibility of its application. </p>
-
     <h1>The copper contamination.</h1>
+
     <h1> 1.Introduction</h1>
-
    <p>Today, from a spoon to a skyscraper, the uses of copper is extending everywhere. For meeting the increasing demand of copper in the world, the massive copper ores are mined every year [Figure 2.1.1].</p>
+
      <img src="h https://static.igem.org/mediawiki/2014/c/cc/Qq1.png" />
-
    <img src="https://static.igem.org/mediawiki/2014/2/25/FH1.png" />
+
<p> In our “Copper Terminator” (Figure 3.2.1), <i>E.coli</i> reproduce in a relatively stable environment in which the temperature is set constant by a temperature sensor , a heater and a microcontroller. Polymers are covered on a framework to keep <i>E.coli</i> form spreading into outside space but let Cu<sup>2+</sup> pass through. Cu<sup>2+</sup> which have entered this equipment is uptaken by <i>E.coli</i>. </p>
-
    <p>And most copper is mined as copper sulfides such as chalcopyrite.Those type of mines are more likely to produce acid mine drainage (AMD) which refers to the outflow of acidic water from metal mines or coal mines [Fig 2.1.2].</p>
+
     <h1> 2.Assumptions</h1>
-
     <img src="https://static.igem.org/mediawiki/2014/3/34/F2.png" />
+
        <p> Due to our experiment, Cu<sup>2+</sup> concentration have little influence on the growth of <i>E.coli</i>. The critical values of tolerance of Cu<sup>2+</sup> for DH5α and BL21 is 165mg/L and 160mg/L which are all beyond the normal concentration in water. We assume that the growth of <i>E.coli</i> is not influenced by Cu<sup>2+</sup> concentration.</p>
-
    <p>The specific process of generating AMD includes three chemical reactions:</p>
+
        <p> Since we have polymers covering the surface of this equipment, the environment inside is relatively independent from the environment outside. The growth of <i>E.coli</i> can hardly be disturbed by environment outside. The assumption is that the growth of <i>E.coli</i> is subject to logistic model, in other words, the environmental resistance only comes from the competition on nutrition within the population.</p>
-
    <p>The oxidization of pyrite which is iron-sulfide is primary contributor to AMD, the major process is:</p>
+
<p> How Cu<sup>2+</sup> is transported into <i>E.coli</i> is still undiscovered. So that it is difficult to come up with an exact description by mathematical equations for this process. To simplify this model, we assume that the rate of Cu<sup>2+</sup> uptaken is not related to the physiological status of <i>E.coli</i>. They are equal under different stage of a single <i>E.coli</i>.</p>
-
    <h3>2FeS<sub>2</sub>(s) + 7O<sub>2</sub>(g) + 2H<sub>2</sub>O(l) = 2Fe<sup>2+</sup>(aq) + 4SO<sub>4</sub><sup>2−</sup>(aq) + 4H<sup>+</sup>(aq)</h3>
+
    <p> For this model here, we assume uniformity of Cu<sup>2+</sup> and <i>E.coli</i>. in the solution.</p>
-
    <p>The ferrous iron (II) generated from oxidization of pyrite is oxidized to ferric iron(III).<p>
+
  <h1> 3.Model<h1>
-
     <h3>4Fe<sup>2+</sup> (aq) + O<sub>2</sub> (g) + 4H<sup>+</sup> (aq) = 4Fe<sup>3+</sup>(aq) + 2H<sub>2</sub>O(l)</h3>
+
<p>
-
    <p>And another process happens simultaneously with oxidization of pyrite and need to be catalyzed by microbes.</p>
+
<b> a)Variables and Parameters</b> </p>
-
    <h3>FeS<sub>2</sub> (s) + 14Fe<sup>3+</sup> (aq) + 8H<sub>2</sub>O(l) = 15Fe<sup>2+</sup> (aq) + 2 SO<sub>4</sub><sup>2−</sup> (aq) + 16H<sup>+</sup> (aq)</h3>
+
<p> i.Variables</p>
-
    <p>Those reactions jointly lower the PH of water and produce soluble ferric iron(III),and finally the acid mine drainage emerges [Figure 2.1.3].</p>
+
     <img src=" https://static.igem.org/mediawiki/2014/2/2c/Qq2.png" />
-
    <img src="https://static.igem.org/mediawiki/2014/9/96/F3.png" />
+
<p> ii.Parameters</p>
-
    <p>Associating with water and air, the metal mines where the ore is sulfide mineral or comprises pyrite can easily produce the highly acidic effusion. Usually the predominant metal ion isn’t iron but copper, zinc. The most common ore mined is chalcopyrite which is a copper-iron-sulfide and occurs with a range of other sulfides. Thus, copper mines are primary crime of AMD.</p>
+
    <img src=" https://static.igem.org/mediawiki/2014/5/56/Qq3.1.png" />
-
    <h1>Copper tolerance of <i>E.coli</i>.</h1>
+
<img src=" https://static.igem.org/mediawiki/2014/5/57/Qq3.2.png" />
-
    <p>Massive mining and extensive using of copper results in serious contamination to environment, and then copper contamination threaten the balance of the whole ecosystem. Even the low concentration of copper is toxic to the organism (look at our algae experiment). But there is an exception, Escherichia coli ,which has several sophisticated and powerful systems to maintain the copper homeostasis so it can survive in skyhigh concentration(look at our MIC(minimum inhibitory concentration, MIC)experiment).Basing on this characteristic of <i>E.col</i>, we start to design an bio-machine to solve the problem of copper contamination effectively.</p>
+
<p>
 +
<b> b)Model Development</b> </p>
 +
<p> The simple model which describes forward diffusion from compartment i to j :</p>
 +
<img src=" https://static.igem.org/mediawiki/2014/c/c6/Qqt1.png" />
 +
<p> Similarly, a back diffusion from j to i is described as:</p>
 +
<img src=" https://static.igem.org/mediawiki/2014/8/86/Qqt2.png" />
 +
<p> The change in the substance of each compartment can be derivated as :</p>
 +
<img src=" https://static.igem.org/mediawiki/2014/0/0e/Qqt3.png" />
 +
<p> In our model, taking the effective surface area of each “Copper Terminator” into consideration, we derivate the change of Cu<sup>2+</sup> concentration outside the equipment as:</p>
 +
<img src=" https://static.igem.org/mediawiki/2014/1/17/Qq4.png" />
 +
<p> Parameter <i>k</i> here has a different unit from previous ones.</p>
 +
<p> The concentration of Cu<sup>2+</sup> inside is increased by diffusion while decreased by E.coli uptaking. So that the change of Cu<sup>2+</sup> concentration inside can be described as :</p>
 +
<img src=" https://static.igem.org/mediawiki/2014/6/65/Qqt4.png" />
 +
<p> The growth of E.coli follow logistic equation :</p>
 +
<img src=" https://static.igem.org/mediawiki/2014/e/e4/Qqt5.png" />
 +
<p>
 +
<b> c)Model Simulation</b> </p>
 +
<p> Simulation is carried out by second order Runge-Kutta method with a step of 0.1 min and 3000 times iteration. The parameters are both from our experiment and some literatures.</p>
 +
<img src=" https://static.igem.org/mediawiki/2014/7/75/Qq5.png" />
 +
<p> Figure 3.2.2 shows the Cu<sup>2+</sup> concentration change with time both inside and outside.</p>
 +
<img src=" https://static.igem.org/mediawiki/2014/6/62/Qq6.png" />
 +
<p> Figure 3.2.3 shows the growth curve of <i>E.coli</i>.</p>
 +
<p>
 +
<b> d)Global Sensitivity Analysis</b> </p>
 +
    <p> Global sensitivity analysis is a method to analyse all the parameters at one time to find out the influence on the result for each parameter and the interaction between those parameters.</p>
 +
    <p> Morris (1991) proposed conducting individually randomized experiments that evaluate the effect of changing one parameter at a time. Each input may assume a discrete number of values, called levels, that are selected from within an allocated range of variation for the parameter.</p>
 +
      <p> For each parameter, two sensitivity measures are proposed by Morris (1991): (1) the mean, μ, which estimates the overall effect of the parameter on a given output; and (2) the.</p>
 +
        <p> standard deviation of the effect, σ, which estimates the higher-order characteristics of the parameter (such as curvatures and interactions).</p>
 +
        <p> We define t<sub>0.5</sub> as the time when Cu<sup>2+</sup> concentration outside reaches 0.5mg/L, which is the maximum value allowed in city water. Monte Carlo method is applied to generate 80 groups of 7 parameters randomly with certain distributions. t<sub>0.5</sub> of each sample can be calculated and then they are undergoing Morris sensitivity analysis.</p>
 +
<img src=" https://static.igem.org/mediawiki/2014/d/d3/Qq7.png" />
 +
    <p> According to figure 3.2.4, the most significant parameters which have most effect on the result in this model are R, h, D, and k. Those parameters are all controllable parameters. The result of Morris analysis gives us a direction on design and application of these “Copper Terminator” equipment: As long as we set proper R, h, D, and k, we will make an outstanding improvement on the performance.</p>
     <h3>Refrences:</h3>
     <h3>Refrences:</h3>
-
     <p>[1] Rensing, C., & Grass, G. (2003). Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS microbiology reviews,27(2‐3), 197-213.</p>
+
     <p>[1] Keen, Robert E., and James D. Spain. <i>Computer simulation in biology</i>: a BASIC introduction. John Wiley & Sons, Inc., 1994.</p>
-
     <p>All Pictures come from Wikipedia.</p>
+
     <p>[2] Morris, Max D. "Factorial sampling plans for preliminary computational experiments." <i>Technometrics</i> 33.2 (1991): 161-174.
 +
</p>
</div>
</div>
</body>
</body>
</html>
</html>

Revision as of 03:43, 17 October 2014

Home

A model on the process of Cu2+ elimination by “Copper Terminator”.

Abstract The process which this equipment “Copper Terminator” uptaking Cu2+ is modeled by ordinary differential equations. Parameters in this models are both inferred from our experiments or obtained from literature. Second order Runge-Kutta method is utilized in simulation and the result shows that Cu2+ is almost entirely eliminated within 300 minutes from 1mg/L. Finally, Morris sensitivity analysis is carried out and shows that four controllable parameters are most important to the effect of elimination and this demonstrate the possibility of its application.

1.Introduction

In our “Copper Terminator” (Figure 3.2.1), E.coli reproduce in a relatively stable environment in which the temperature is set constant by a temperature sensor , a heater and a microcontroller. Polymers are covered on a framework to keep E.coli form spreading into outside space but let Cu2+ pass through. Cu2+ which have entered this equipment is uptaken by E.coli.

2.Assumptions

Due to our experiment, Cu2+ concentration have little influence on the growth of E.coli. The critical values of tolerance of Cu2+ for DH5α and BL21 is 165mg/L and 160mg/L which are all beyond the normal concentration in water. We assume that the growth of E.coli is not influenced by Cu2+ concentration.

Since we have polymers covering the surface of this equipment, the environment inside is relatively independent from the environment outside. The growth of E.coli can hardly be disturbed by environment outside. The assumption is that the growth of E.coli is subject to logistic model, in other words, the environmental resistance only comes from the competition on nutrition within the population.

How Cu2+ is transported into E.coli is still undiscovered. So that it is difficult to come up with an exact description by mathematical equations for this process. To simplify this model, we assume that the rate of Cu2+ uptaken is not related to the physiological status of E.coli. They are equal under different stage of a single E.coli.

For this model here, we assume uniformity of Cu2+ and E.coli. in the solution.

3.Model

a)Variables and Parameters

i.Variables

ii.Parameters

b)Model Development

The simple model which describes forward diffusion from compartment i to j :

Similarly, a back diffusion from j to i is described as:

The change in the substance of each compartment can be derivated as :

In our model, taking the effective surface area of each “Copper Terminator” into consideration, we derivate the change of Cu2+ concentration outside the equipment as:

Parameter k here has a different unit from previous ones.

The concentration of Cu2+ inside is increased by diffusion while decreased by E.coli uptaking. So that the change of Cu2+ concentration inside can be described as :

The growth of E.coli follow logistic equation :

c)Model Simulation

Simulation is carried out by second order Runge-Kutta method with a step of 0.1 min and 3000 times iteration. The parameters are both from our experiment and some literatures.

Figure 3.2.2 shows the Cu2+ concentration change with time both inside and outside.

Figure 3.2.3 shows the growth curve of E.coli.

d)Global Sensitivity Analysis

Global sensitivity analysis is a method to analyse all the parameters at one time to find out the influence on the result for each parameter and the interaction between those parameters.

Morris (1991) proposed conducting individually randomized experiments that evaluate the effect of changing one parameter at a time. Each input may assume a discrete number of values, called levels, that are selected from within an allocated range of variation for the parameter.

For each parameter, two sensitivity measures are proposed by Morris (1991): (1) the mean, μ, which estimates the overall effect of the parameter on a given output; and (2) the.

standard deviation of the effect, σ, which estimates the higher-order characteristics of the parameter (such as curvatures and interactions).

We define t0.5 as the time when Cu2+ concentration outside reaches 0.5mg/L, which is the maximum value allowed in city water. Monte Carlo method is applied to generate 80 groups of 7 parameters randomly with certain distributions. t0.5 of each sample can be calculated and then they are undergoing Morris sensitivity analysis.

According to figure 3.2.4, the most significant parameters which have most effect on the result in this model are R, h, D, and k. Those parameters are all controllable parameters. The result of Morris analysis gives us a direction on design and application of these “Copper Terminator” equipment: As long as we set proper R, h, D, and k, we will make an outstanding improvement on the performance.

Refrences:

[1] Keen, Robert E., and James D. Spain. Computer simulation in biology: a BASIC introduction. John Wiley & Sons, Inc., 1994.

[2] Morris, Max D. "Factorial sampling plans for preliminary computational experiments." Technometrics 33.2 (1991): 161-174.