Team:Oxford/biosensor optimisation
From 2014.igem.org
(Difference between revisions)
Line 124: | Line 124: | ||
<div class="white_news_block"> | <div class="white_news_block"> | ||
<h1>How much of each input should we use to test the biosensor?</h1> | <h1>How much of each input should we use to test the biosensor?</h1> | ||
+ | |||
+ | Our ideal biosensor must be robust. The top graph demonstrates this nicely. Beyond a certain threshold value of ATC, there is little change in the fluorescence response predicted - it saturates and maintains a constant level. Practically, this means we have to ensure that the ATC concentrations present in our final system must comfortably exceed this threshold ATC value.<br><br> | ||
+ | |||
From our initial system characterization, we have established that when DCM is not present in the system, there will be no fluorescence response aside from that due to the basal transcription rate. However, the model predicts that when even a small amount of DCM is added and the transient behaviour has stabilized, the fluorescence expressed in the system quickly reaches its saturation value. This corresponds to a highly sensitive biosensor which can effectively only express two fluorescence levels- zero or a predefined maximum. The transition from zero to the maximum saturation value occurs at very low concentrations of DCM. <br><br> | From our initial system characterization, we have established that when DCM is not present in the system, there will be no fluorescence response aside from that due to the basal transcription rate. However, the model predicts that when even a small amount of DCM is added and the transient behaviour has stabilized, the fluorescence expressed in the system quickly reaches its saturation value. This corresponds to a highly sensitive biosensor which can effectively only express two fluorescence levels- zero or a predefined maximum. The transition from zero to the maximum saturation value occurs at very low concentrations of DCM. <br><br> | ||
To summarise, we have established that the inputs to our biosensor should be a constant medium concentration of ATC and a varying concentration of DCM as it is degraded. We should note that the ATC concentration will not value without external influence because the system does not consume ATC and its rate of degradation is negligible. | To summarise, we have established that the inputs to our biosensor should be a constant medium concentration of ATC and a varying concentration of DCM as it is degraded. We should note that the ATC concentration will not value without external influence because the system does not consume ATC and its rate of degradation is negligible. | ||
- | + | <br><br><br><br><br><br> | |
</div> | </div> | ||
</div> | </div> |
Revision as of 22:06, 16 October 2014