Team:York/Cake

From 2014.igem.org

(Difference between revisions)
Line 36: Line 36:
<ul class="nav navbar-nav navbar-right">
<ul class="nav navbar-nav navbar-right">
<li><a href="https://2014.igem.org/Team:York">Home</a></li>
<li><a href="https://2014.igem.org/Team:York">Home</a></li>
-
<li class="active"><a href="https://2014.igem.org/Team:York/Team">Team</a></li>
+
<li><a href="https://2014.igem.org/Team:York/Team">Team</a></li>
-
<li class="dropdown">
+
<li class="dropdown active">
                                                 <a href="#" class="dropdown-toggle" data-toggle="dropdown">Project
                                                 <a href="#" class="dropdown-toggle" data-toggle="dropdown">Project
  <b class="caret"></b></a>
  <b class="caret"></b></a>
                                                 <ul class="dropdown-menu">
                                                 <ul class="dropdown-menu">
                                                         <li><a href="https://2014.igem.org/Team:York/Project">Background</a></li>
                                                         <li><a href="https://2014.igem.org/Team:York/Project">Background</a></li>
-
                                                         <li><a href="https://2014.igem.org/Team:York/Constructs">Constructs</a></li>
+
                                                         <li class="active"><a href="https://2014.igem.org/Team:York/Constructs">Constructs</a></li>
                                                         <li><a href="https://2014.igem.org/Team:York/Application">Practical Application</a></li>
                                                         <li><a href="https://2014.igem.org/Team:York/Application">Practical Application</a></li>
                                                 </ul>
                                                 </ul>
Line 77: Line 77:
<!--  THE TOP HAS ENDED. THE REST OF THE PAGE BEGINS.  -->
<!--  THE TOP HAS ENDED. THE REST OF THE PAGE BEGINS.  -->
       <div class="container">
       <div class="container">
-
<div class="jumbotron">
+
<div class="jumbotron">
<div class="row">
<div class="row">
<div class="col-lg-8">
<div class="col-lg-8">
-
<h1>Team members</h1>
+
<h2>Constructs</h2>
<hr>
<hr>
-
<p>In just 50 years, the University has become one of the top in the UK. We think this is because of its passion and dedication towards each of its subjects; something we share! Our team is made up of 20 undergraduates from a range of disciplines, as well as our two supervisors and advisor.</p>
+
<img class="img-responsive constructs" src="https://static.igem.org/mediawiki/2014/a/ae/York_Constructs.jpg">
-
<h2>Undergraduates</h2>
+
<br><br>
 +
<ul class="nav nav-tabs" role="tablist" id="myTab">
 +
    <li class="active"><a href="#one" role="tab" data-toggle="tab">pYodA</a></li>
 +
    <li><a href="#two" role="tab" data-toggle="tab">NRAMP</a></li>
 +
    <li><a href="#three" role="tab" data-toggle="tab">CysP</a></li>
 +
    <li><a href="#four" role="tab" data-toggle="tab">SpPCS</a></li>
 +
    <li><a href="#five" role="tab" data-toggle="tab">Gsh1*</a></li>
 +
    <li><a href="#six" role="tab" data-toggle="tab">CysE*</a></li>
 +
</ul>
-
<div class="row team">
+
<div class="tab-content">
-
+
<div class="tab-pane active" id="one" class="collapse">
-
<div class="col-md-4">
+
-
<img src="https://static.igem.org/mediawiki/2014/2/25/York_RW.JPG" class="headshot img-responsive">
+
-
<h4>Robyn Whiting</h4> <p><i>BSc Genetics First year</i></p>
+
-
</div>
+
-
+
-
<div class="col-md-4">
+
-
<img src="https://static.igem.org/mediawiki/2014/f/f6/York_SA.png" class="headshot img-responsive">
+
-
<h4>Sarah Andrews</h4> <p><i>BSc Molecular Cell Biology First year</i></p>
+
-
</div>
+
-
<div class="col-md-4">
+
<h2>pYodA</h2>
-
<img src="https://static.igem.org/mediawiki/2014/e/e4/York_NP.png" class="headshot img-responsive">
+
<p>
-
<h4>Nikola Panayotov</h4> <p><i>BSc Biochemistry Second year</i></p>
+
<b>Name:</b> pYodA (ZinTp) <br>
-
</div>
+
<b>Organism:</b> <i>Escherichia Coli</i> <br>
-
+
<b>Normal Function:</b> pYodA is a cadmium-induced promoter that activates the yodA(zinT) gene, leading to the production of ZinT metal-binding protein.<br>
-
</div>
+
<b>Aim:</b> We are using pYodA in an alternative way; to regulate the expression of the CysP gene (sulfate transporter) and the NRAMP gene (Cadmium transporter). Due to using pYodA, the expression of these two genes will be regulated by the concentration of Cadmium in the extracellular environment. The over-production of Cysteine will only occur when the concentration of Cadmium reaches the sensitivity threshold of pYodA. Due to cysteine production being both energetically demanding and toxic at high concentrations, we do not want these genes to be expressed constitutively. <br>
-
<div class="row team">
+
<b>Characterisation:</b> In order to characterise pYodA, we will couple it with a GFP gene. This will allow us to calculate the sensitivity threshold of pYodA and measure the amount of cadmium that can be chelated at various concentrations. <br>
-
+
<b>Literature:</b>
-
<div class="col-md-4">
+
<ol>
-
<img src="https://static.igem.org/mediawiki/2014/e/e1/York_IG.JPG" class="headshot img-responsive">
+
<li>http://mic.sgmjournals.org/content/148/12/3801.long</li>
-
<h4>Ivan Gyulev</h4> <p><i>BSc Genetics Third year</i></p>
+
<li>http://www.uniprot.org/uniprot/F4VWH2</li>
-
</div>
+
<li>http://sbkb.org/uid/F4VWH2/uniprot#structures</li>
-
<div class="col-md-4">
+
<li>http://www.jbc.org/content/278/44/43728</li>
-
<img src="https://static.igem.org/mediawiki/2014/2/2b/York_HE.JPG" class="headshot img-responsive">
+
<li>http://biocyc.org/ECOLI/NEW-IMAGE?type=GENE&object=G7061</li>
-
<h4>Hanna Esser</h4> <p><i>BSc Biochemistry First year</i></p>
+
</ol>
-
</div>
+
</p>
-
<div class="col-md-4">
+
-
<img src="https://static.igem.org/mediawiki/2014/6/69/York_RH.JPG" class="headshot img-responsive">
+
-
<h4>Ruth Haley</h4> <p><i>BSc Biochemistry First year</i></p>
+
-
</div>
+
-
+
-
</div>
+
-
 
+
-
<div class="row team">
+
-
+
-
<div class="col-md-4">
+
-
<img src="https://static.igem.org/mediawiki/2014/6/6a/York_LD.jpg" class="headshot img-responsive">
+
-
<h4>Lindsey Dalzell</h4> <p><i>BSc Biology First year</i></p>
+
-
</div>
+
-
<div class="col-md-4">
+
-
<img src="https://static.igem.org/mediawiki/2014/6/68/York_ED.png" class="headshot img-responsive">
+
-
<h4>Ellie Davis</h4> <p><i>BSc Biology First year</i></p>
+
-
</div>
+
-
<div class="col-md-4">
+
-
<img src="https://static.igem.org/mediawiki/2014/4/4a/York_JT.JPG" class="headshot img-responsive">
+
-
<h4>Joseph Tresise</h4> <p><i>MChem Chemistry Third year</i></p>
+
-
</div>
+
-
+
-
</div>
+
-
<div class="row team">
+
-
                <div class="col-md-4">
+
-
<img src="https://static.igem.org/mediawiki/2014/c/cf/York_RCdP.JPG" class="headshot img-responsive">
+
-
<h4>Ricardo Cañavate del Pino</h4> <p><i>BSc Biochemistry Second year</i></p>
+
-
</div>
+
-
<div class="col-md-4">
+
-
<img src="https://static.igem.org/mediawiki/2014/2/28/York_TM.jpg" class="headshot img-responsive">
+
-
<h4>Teodora Manea</h4> <p><i>BSc Biochemistry First year</i></p>
+
-
</div>
+
-
<div class="col-md-4">
+
-
<img src="https://static.igem.org/mediawiki/2014/d/db/York_CW.JPG" class="headshot img-responsive">
+
-
<h4>Cauã Westmann </h4> <p><i>BSc Biology Third year</i></p>
+
-
</div>
+
-
</div>
+
-
 
+
-
<div class="row team">
+
-
+
-
<div class="col-md-4">
+
-
<img src="https://static.igem.org/mediawiki/2014/e/e2/York_MA.jpg" class="headshot img-responsive">
+
-
<h4>Marieta Avramov</h4> <p><i>BSc Molecular Cell Biology First year</i></p>
+
-
</div>
+
-
<div class="col-md-4">
+
-
<img src="https://static.igem.org/mediawiki/2014/3/39/York_AM.JPG" class="headshot img-responsive">
+
-
<h4>Auriane Muse</h4> <p><i>BSc Biology Second year</i></p>
+
-
</div>
+
</div>
</div>
-
<div class="row team">
+
<div class="tab-pane" id="two" class="collapse">
-
<div class="col-md-6">
+
<h2>NRAMP</h2>
-
<br>
+
<p>
-
<ul>
+
<b>Gene:</b> mntH<br>
-
<li><p>Vishnu Sunil: <i>BSc Environmental Science Second year</i> </p></li>
+
<b>Organism:</b> <i>Escherichia Coli</i><br>
-
<li><p>Lucy Dye: <i>BSc Biology First year</i> </p></li>
+
<b>Protein:</b> NRAMP<br>
-
<li><p>Maria Agapiou: <i>BSc Biology First year</i> </p></li>
+
<b>Function:</b> NRAMP is a membrane divalent metal-ion transporter. In addition to iron and manganese, it also transports Cd ions into the cell.<br>
-
<li><p>Tsvetelina Tsekova: <i>BSc Genetics Second year</i> </p></li>
+
<b>Aim:</b> We want to use the endogenous transporter NRAMP to take up the cadmium from the environment. The cadmium will then activate pYoda and set off the phytochelatin synthesis process.<br>
-
<li><p>Arushi Aneja: <i>MEng Computer Science with Artificial Intelligence</i> </p></li>
+
<b>Expression:</b> We can run assays measuring the concentration of cadmium in the environment. If NRAMP is active, the concentration of cadmium should decrease.<br></p></div>
-
</ul>
+
<div class="tab-pane" id="three" class="collapse">
-
</div></div>
+
-
 
+
<h2>CysP</h2>
-
<h2>Acknowledgements</h2>
+
<p>
<p>
-
<b>Dr Gavin Thomas, Dr James Chong, Dr Thorunn Helgason, Dr Leo Caves</b> and <b>Professor Maggie Smith</b> for providing their input and advice as Senior Lecturers. Our team is indebted to them for the guidance they gave regarding the feasibility of our project at the start and supervising our progress throughout.
+
<b>Gene:</b> cysP (AKA YlnA) <br>
-
<b>Rosanna Hennessy</b> for helping us design our constructs and ensuring a trouble-free synthesis.
+
<b>Organism:</b> <i>Bacillus Subtilis</i> <br>
-
<b>Michael Schultz, Daniel Ungar</b> and <b>Erica Kimtz</b> for attending our Sponsors event and giving input and feedback about our presentation and project.
+
<b>Protein:</b> CysP <br>
-
The lab technicians, <b>Jen, Sam</b> and <b>Nikki</b> who kept our lab supplied and organised, while helping with any technical problems that arose over the summer.  
+
<b>Function:</b> This gene encodes for CysP, a sulfate/thiosulfate ABC transporter found in the periplasmic space. <br>
-
<b>Dr Erica Kintz</b> and <b>Dr Marja van der Wouden</b> for providing us with some E. coli mutants and with 96 well plates for our characterisation.  
+
<b>Aim:</b> We want to overexpress this gene in E.coli. This would lead to increased sulfate uptake, which could be used to produce cysteine and eventually phytochelatins that would bind cadmium. <br>
-
<b>Dr Andrew Leech</b> for giving us advice on the design of our characterisation experiments.
+
<b>Expression:</b> We could run assays measuring the concentration of sulfate in the environment containing our bacteria. <br>
-
<b>Phil Roberts</b> for providing design advice that created this wiki you are reading. <br> <br>
+
-
The 2014 York iGEM Team would like to thank all of the above for their advice and guidance throughout this competition, we know it wouldn't have been possible without these people giving up their time to aid us! Thank you very much!
+
</p>
</p>
 +
</div>
</div>
 +
 +
<div class="tab-pane" id="six" class="collapse">
 +
<h2>CysE*</h2>
 +
<p>
 +
<b>Original Gene:</b> cysE<br>
 +
<b>Mutant Gene:</b> cysE*<br>
 +
<b>Organism:</b> <i>Escherichia Coli</i> <br>
 +
<b>Protein:</b> CysE(SAT)<br>
 +
<b>Normal function:</b> To catalyse the acetylation of L-serine (the first step in cysteine biosynthesis)<br>
 +
<b>Function:</b> Serine acetyltransferase (CysE) carries out the first step in cysteine biosynthesis; it  catalyses the acetylation of L-serine which generates O-acetyl-L-serine. Cysteine itself strongly inhibits the activity of serine acetyltransferase by binding to the serine-binding site. This inhibition depends on the protein's carboxy terminus, and has been localized to Met-256 specifically. Due to cysteine production being both energetically demanding and toxic at high concentrations, the cell does not want to produce cysteine constitutively.<br>
 +
<b>Aim:</b> To over-produce cysteine.To fulfill this aim, we need to remove negative feedback from cysteine biosynthesis. To do this, we are using a mutant CysE gene (CysE*). Our mutant CysE gene will produce a protein that has a single amino acid substitution: Met-256 will be replaced by Ile by changing the corresponding AUG codon to AUC. This single amino-acid substitution will alter the three dimensional shape of the serine-binding site in our acetyltransferase. Changing the shape of the serine-binding site prevents cysteine from binding to it. Thus, our acetyltransferase will not be inhibited by cysteine. As a result, we will be able to over-produce cysteine in our cell.<br>
 +
<b>Method:</b> We had the cysE* gene synthesised to produce the mutant CysE* protein.<br>
 +
<b>Literature:</b>
 +
<ol>
 +
<li>http://aem.asm.org/content/66/10/4497.full</li>
 +
<li>Denk D., Bock A. <i>J. Gen. Microbiol</i>, 1987</li>
 +
</ol></p></div>
 +
 +
<div class="tab-pane" id="five" class="collapse">
 +
<h2>Gsh1*</h2>
 +
<p>
 +
<b>Original Gene:</b> gsh1/gshA<br>
 +
<b>Organism:</b> <i>Saccharomyces cerevisiae</i><br>
 +
<b>Protein:</b> Glutamate-Cysteine Ligase (previously known as gamma-glutamylcysteine synthetase)<br>
 +
<b>Function:</b> Gamma glutamylcysteine synthetase catalyzes the first step in glutathione (GSH) biosynthesis;<br>
 +
L-glutamate + L-cysteine + ATP -> gamma-glutamyl cysteine + ADP + Pi<br>
 +
Expression is induced by oxidants, cadmium, and mercury. Protein abundance increases in response to DNA replication stress.<br>
 +
<b>Aim:</b> We can use the overproduced cysteine to make gamma-glutamyl cysteine, which is the monomer that forms phytochelatins (n=10-20). In order to do this, we need glutamate-cysteine ligase to catalyse the reaction. We can overexpress GSH1* using the pYodA promoter. <br>
 +
<b>Literature:</b><ol><li>http://biocyc.org/YEAST/NEW-IMAGE?type=GENE-IN-MAP-IN-PWY&object=YJL101C</li></ol></p></div>
 +
 +
<div class="tab-pane" id="four" class="collapse">
 +
<h2>spPCS</h2>
 +
<p>
 +
<b>Gene:</b> spPCS<br>
 +
<b>Organism:</b> <i>Schizosaccharomyces pombe</i><br>
 +
<b>Function:</b> The phytochelatin synthase in S. pombe uses glutathione with a blocked thiol group  to synthesise phytochelatins.<br>
 +
<b>Aim:</b> Overexpression of this gene, together with Gsh1*, in E.coli has been shown to increase phytochelatin production and lead to a 7.5-times-higher Cd accumulation. We want to use this gene to make our bacteria more efficient in  taking up cadmium.<br>
 +
<b>Literature</b><ol><li>http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2075016/</li></ol></p></div>
 +
</div>
</div>
</div>
</div>
 +
</div>
</div>
</div>
</div>
</div>

Revision as of 12:32, 16 October 2014

Team York 2014


Constructs




pYodA

Name: pYodA (ZinTp)
Organism: Escherichia Coli
Normal Function: pYodA is a cadmium-induced promoter that activates the yodA(zinT) gene, leading to the production of ZinT metal-binding protein.
Aim: We are using pYodA in an alternative way; to regulate the expression of the CysP gene (sulfate transporter) and the NRAMP gene (Cadmium transporter). Due to using pYodA, the expression of these two genes will be regulated by the concentration of Cadmium in the extracellular environment. The over-production of Cysteine will only occur when the concentration of Cadmium reaches the sensitivity threshold of pYodA. Due to cysteine production being both energetically demanding and toxic at high concentrations, we do not want these genes to be expressed constitutively.
Characterisation: In order to characterise pYodA, we will couple it with a GFP gene. This will allow us to calculate the sensitivity threshold of pYodA and measure the amount of cadmium that can be chelated at various concentrations.
Literature:

  1. http://mic.sgmjournals.org/content/148/12/3801.long
  2. http://www.uniprot.org/uniprot/F4VWH2
  3. http://sbkb.org/uid/F4VWH2/uniprot#structures
  4. http://www.jbc.org/content/278/44/43728
  5. http://biocyc.org/ECOLI/NEW-IMAGE?type=GENE&object=G7061

NRAMP

Gene: mntH
Organism: Escherichia Coli
Protein: NRAMP
Function: NRAMP is a membrane divalent metal-ion transporter. In addition to iron and manganese, it also transports Cd ions into the cell.
Aim: We want to use the endogenous transporter NRAMP to take up the cadmium from the environment. The cadmium will then activate pYoda and set off the phytochelatin synthesis process.
Expression: We can run assays measuring the concentration of cadmium in the environment. If NRAMP is active, the concentration of cadmium should decrease.

CysP

Gene: cysP (AKA YlnA)
Organism: Bacillus Subtilis
Protein: CysP
Function: This gene encodes for CysP, a sulfate/thiosulfate ABC transporter found in the periplasmic space.
Aim: We want to overexpress this gene in E.coli. This would lead to increased sulfate uptake, which could be used to produce cysteine and eventually phytochelatins that would bind cadmium.
Expression: We could run assays measuring the concentration of sulfate in the environment containing our bacteria.

CysE*

Original Gene: cysE
Mutant Gene: cysE*
Organism: Escherichia Coli
Protein: CysE(SAT)
Normal function: To catalyse the acetylation of L-serine (the first step in cysteine biosynthesis)
Function: Serine acetyltransferase (CysE) carries out the first step in cysteine biosynthesis; it catalyses the acetylation of L-serine which generates O-acetyl-L-serine. Cysteine itself strongly inhibits the activity of serine acetyltransferase by binding to the serine-binding site. This inhibition depends on the protein's carboxy terminus, and has been localized to Met-256 specifically. Due to cysteine production being both energetically demanding and toxic at high concentrations, the cell does not want to produce cysteine constitutively.
Aim: To over-produce cysteine.To fulfill this aim, we need to remove negative feedback from cysteine biosynthesis. To do this, we are using a mutant CysE gene (CysE*). Our mutant CysE gene will produce a protein that has a single amino acid substitution: Met-256 will be replaced by Ile by changing the corresponding AUG codon to AUC. This single amino-acid substitution will alter the three dimensional shape of the serine-binding site in our acetyltransferase. Changing the shape of the serine-binding site prevents cysteine from binding to it. Thus, our acetyltransferase will not be inhibited by cysteine. As a result, we will be able to over-produce cysteine in our cell.
Method: We had the cysE* gene synthesised to produce the mutant CysE* protein.
Literature:

  1. http://aem.asm.org/content/66/10/4497.full
  2. Denk D., Bock A. J. Gen. Microbiol, 1987

Gsh1*

Original Gene: gsh1/gshA
Organism: Saccharomyces cerevisiae
Protein: Glutamate-Cysteine Ligase (previously known as gamma-glutamylcysteine synthetase)
Function: Gamma glutamylcysteine synthetase catalyzes the first step in glutathione (GSH) biosynthesis;
L-glutamate + L-cysteine + ATP -> gamma-glutamyl cysteine + ADP + Pi
Expression is induced by oxidants, cadmium, and mercury. Protein abundance increases in response to DNA replication stress.
Aim: We can use the overproduced cysteine to make gamma-glutamyl cysteine, which is the monomer that forms phytochelatins (n=10-20). In order to do this, we need glutamate-cysteine ligase to catalyse the reaction. We can overexpress GSH1* using the pYodA promoter.
Literature:

  1. http://biocyc.org/YEAST/NEW-IMAGE?type=GENE-IN-MAP-IN-PWY&object=YJL101C

spPCS

Gene: spPCS
Organism: Schizosaccharomyces pombe
Function: The phytochelatin synthase in S. pombe uses glutathione with a blocked thiol group to synthesise phytochelatins.
Aim: Overexpression of this gene, together with Gsh1*, in E.coli has been shown to increase phytochelatin production and lead to a 7.5-times-higher Cd accumulation. We want to use this gene to make our bacteria more efficient in taking up cadmium.
Literature

  1. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2075016/