Team:Washington/Methods
From 2014.igem.org
Kristanguyen (Talk | contribs) |
|||
Line 3: | Line 3: | ||
<html> | <html> | ||
- | <body> | + | <body> |
- | + | <h1> Method </h1> | |
- | + | <p align =left> | |
- | + | ||
- | + | ||
- | + | ||
+ | The essential process of our system involves cloning and manufacturing of a plasmid in <i> E. coli </i>. Once, the plasmids have been constructed and verified in <i> E. coli </i> they are transformed into <i>S. cerevisiae</i>. The plasmid constructs are then expressed. Following several days of growth the yeast cultures are passed through a Flow Cytometer and the fluorescence of each cell is measured. Higher fluorescence is associated with higher expression of the protein of interest which in-turn is indicative of higher protein stability. | ||
+ | |||
+ | </p> | ||
+ | |||
+ | |||
+ | <h2> Cloning in <i> Escherichia coli </i> </h2> | ||
- | + | <p align = left> | |
+ | |||
+ | There are five possible degron constructs corresponding to five different positions the degron can take in our construct. Four of the five vectors for our protein of interest DNA code contains contain a degron (Deg1-4) as well as an EcoRI and Nhel111 restriction enzyme cutsite between Gal4 and VP16. Furthermore, the vector also contains a region that encodes Ampicillin resistance as well as autotrophic region that encodes for uracil synthesis. The DNA that encodes our protein of interest, the insert, is amplified to include both cutsites through a polymerase chain reaction. In a subsequent step the amplified fragment is then digested and then ligated with the appropriate vector and transformed into chemically competent<i> E.coli </i> wither XL-1 Blue or XL10-Gold strains. Similarly, Deg0(no degron) vector has EcoRI along with a Hind111 cutsite. Using the different cutsites our DNA fragment is prepared using PCR and ligated into the Deg0 vector and then transformed. Once the transformation is complete, the cells are plated onto LB-agar plates supplimented with ampicillin in order to ensure that all <i> E.coli </i> colonies contain our recombinant plasmid. After being grown for a day, several colonies are swiped and added to an overnight culture. The overnight culture is grown overnight and their recombinant plasmid is harvested and sequenced (Sanger sequencing is used through Genewiz Inc.). If the plasmids are correct, we then proceed to create a glycerol stock of the cell culture as well as a miniprep stock of the plasmid in order to conduct further experimentation in yeast. <br> | ||
+ | |||
+ | </p> | ||
+ | |||
+ | |||
+ | <h2> Preparation and Passaging of <i> Saccharomyces cerevisiae </i> </h2> | ||
+ | <p align = left> | ||
+ | |||
+ | Once, plasmids of the five possible degron constructs have been cloned with our three test proteins, they are subsequently transformed in PyE1 a strain of <i> S. cerevisiae </i> with the ability to produce green fluorescent proteins. Following the transformation, the cells are plated onto plates with on a Selective Dropout (C-Uracil) media and incubated at 30<sup>o</sup>C for 2 days. The purpose of the dropout media is to ensure that only cells that contain our plasmid survive as the recombinant plasmid allows cells to produce uracil, an essential amino acid. Without the recombinant plasmid, the cell would be fatally deprived of uracil which has been "knocked out" of the plating media. After two days, three colonies are swiped from the plate and added to an overnight culture of 2-3mL Selective Dropout Media C-Uracil and 2% Glucose then incubated for another two days at 30<sup>o</sup>C. After another two days of incubation, a 20-50uL aliquot of each culture is "passaged" into another 3mL culture prepared in the same manner as before and incubated for the same duration and temperature as the previous culture. The passaging is done several times after each passage after the second passage, a glycerol stock is prepare from the culture and Flow Cytometry is run on the culture. <br> | ||
- | + | </p> | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | <p align = left> | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | The purpose of passaging is to gradually remove excess copies of the plasmid constructs. Excess copies, exceeding one per cell will lead to multiple fold increase in the expression of the degron protein construct. As a result of this, GFP expression will also be increased thus reducing the viability and accuracy of the Flow Cytometry measurements conducted on each cell culture. This problematice as GFP output will become related to the number of plasmids as well as the stability of the various degron constructs which will likely invalidate any results. | |
- | + | </p> | |
- | <p> Flow cytometry is a high throughput method of analyzing cells for various optical outputs, namely fluorescnce. A flow cytometer is an analytical instrument in which cells that have been suspended in a solution are passed through a narrow channel in which fluorescence of invidual cells can be measured. <br> | + | |
- | + | <h2> Relative Stability Analyzed via Flow Cytometry </h2> | |
- | + | ||
+ | <p> | ||
+ | |||
+ | <img src="https://static.igem.org/mediawiki/2014/d/d9/Degron_construct.jpg" alt="Degron Constructs" style="width:750px;height:379px"> <br> | ||
+ | |||
+ | Flow cytometry is a high throughput method of analyzing cells for various optical outputs, namely fluorescnce. A flow cytometer is an analytical instrument in which cells that have been suspended in a solution are passed through a narrow channel in which fluorescence of invidual cells can be measured. <br> | ||
+ | <br> | ||
+ | By utilizing Flow Cytometry, we can measure the amount of GFP output within cells from each degron construct. Based on where the Degron is inserted, we expected a different level of fluorescence. As such, we expected to see the highest GFP production in our Deg0 construct, as it only contains the Gal4-Protein-VP16 complex with no Degron inserted, hence being the most stable. We expected that Deg2 and Deg3 would have a lower GFP production than Deg0 but higher than Deg1 and Deg4. This rationale was based on the fact that the Deg1 and Deg4 have the Degron exposed, making it more likely to be degraded by ubiquitination than in Deg2 and Deg3 which has the Degron buried inside the Gal4-Protein-VP16 complex.<br> | ||
+ | |||
+ | </p> | ||
- | + | <h2> Mutagenesis through Error Prone Polymerase Chain Reactions (E-PCRs) </h2> | |
- | + | <p> | |
- | + | ||
- | + | In order to validate our system as being capable of selecting more stable protein variants, we have to produce mutations in our protein of interest. Those mutations could potentially be beneficial and could carry a stabilizing affect on the protein of interest. Error-prone PCR utilizes DNA-polymerase's error-prone nature and further increases the likelyhood of mutations by manipulating the conditions in which, DNA-polymerase operates in, thereby causing the polymerase to create errors in DNA sequencing which in turn will create changes in the protein construct. Once, the DNA coding of our protein has been changed we can express the mutations and analyze those stabilizing or de-stabilizing affects they have on our protein. The possible mutations can then be analyzed using the degron system and more stable mutations can be easily seen then sequenced. | |
- | + | ||
- | + | </p> | |
- | + | ||
- | + | ||
- | + | ||
- | + | <h3> Selecting Stable Variants through Fluorescence Activated Cell Sorting (F.A.C.S.) </h3> | |
+ | |||
+ | <p> | ||
- | + | In order to validate our system as being capable of selecting more stable protein variants, we have to produce mutations in our protein of interest. Those mutations could potentially be beneficial and could carry a stabilizing affect on the protein of interest. Error-prone PCR utilizes DNA-polymerase's error-prone nature and further increases the likelyhood of mutations by manipulating the conditions in which, DNA-polymerase operates in, thereby causing the polymerase to create errors in DNA sequencing which in turn will create changes in the protein construct. Once, the DNA coding of our protein has been changed we can express the mutations and analyze those stabilizing or de-stabilizing affects they have on our protein. The possible mutations can then be analyzed using the degron system and more stable mutations can be easily seen through FACS (see below) then subsequently sequenced. As we sequence the various mutants, we are also looking for convergence in which the genetic sequence as well as the amino acid sequences converge on a single or a few mutations that lead to significantly higher fluorescence and therefore, higher stability. | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | </p> | |
- | </body> | + | </body> |
</html> | </html> |
Revision as of 06:04, 16 October 2014
|
Method
The essential process of our system involves cloning and manufacturing of a plasmid in E. coli . Once, the plasmids have been constructed and verified in E. coli they are transformed into S. cerevisiae. The plasmid constructs are then expressed. Following several days of growth the yeast cultures are passed through a Flow Cytometer and the fluorescence of each cell is measured. Higher fluorescence is associated with higher expression of the protein of interest which in-turn is indicative of higher protein stability.
Cloning in Escherichia coli
There are five possible degron constructs corresponding to five different positions the degron can take in our construct. Four of the five vectors for our protein of interest DNA code contains contain a degron (Deg1-4) as well as an EcoRI and Nhel111 restriction enzyme cutsite between Gal4 and VP16. Furthermore, the vector also contains a region that encodes Ampicillin resistance as well as autotrophic region that encodes for uracil synthesis. The DNA that encodes our protein of interest, the insert, is amplified to include both cutsites through a polymerase chain reaction. In a subsequent step the amplified fragment is then digested and then ligated with the appropriate vector and transformed into chemically competent E.coli wither XL-1 Blue or XL10-Gold strains. Similarly, Deg0(no degron) vector has EcoRI along with a Hind111 cutsite. Using the different cutsites our DNA fragment is prepared using PCR and ligated into the Deg0 vector and then transformed. Once the transformation is complete, the cells are plated onto LB-agar plates supplimented with ampicillin in order to ensure that all E.coli colonies contain our recombinant plasmid. After being grown for a day, several colonies are swiped and added to an overnight culture. The overnight culture is grown overnight and their recombinant plasmid is harvested and sequenced (Sanger sequencing is used through Genewiz Inc.). If the plasmids are correct, we then proceed to create a glycerol stock of the cell culture as well as a miniprep stock of the plasmid in order to conduct further experimentation in yeast.
Preparation and Passaging of Saccharomyces cerevisiae
Once, plasmids of the five possible degron constructs have been cloned with our three test proteins, they are subsequently transformed in PyE1 a strain of S. cerevisiae with the ability to produce green fluorescent proteins. Following the transformation, the cells are plated onto plates with on a Selective Dropout (C-Uracil) media and incubated at 30oC for 2 days. The purpose of the dropout media is to ensure that only cells that contain our plasmid survive as the recombinant plasmid allows cells to produce uracil, an essential amino acid. Without the recombinant plasmid, the cell would be fatally deprived of uracil which has been "knocked out" of the plating media. After two days, three colonies are swiped from the plate and added to an overnight culture of 2-3mL Selective Dropout Media C-Uracil and 2% Glucose then incubated for another two days at 30oC. After another two days of incubation, a 20-50uL aliquot of each culture is "passaged" into another 3mL culture prepared in the same manner as before and incubated for the same duration and temperature as the previous culture. The passaging is done several times after each passage after the second passage, a glycerol stock is prepare from the culture and Flow Cytometry is run on the culture.
The purpose of passaging is to gradually remove excess copies of the plasmid constructs. Excess copies, exceeding one per cell will lead to multiple fold increase in the expression of the degron protein construct. As a result of this, GFP expression will also be increased thus reducing the viability and accuracy of the Flow Cytometry measurements conducted on each cell culture. This problematice as GFP output will become related to the number of plasmids as well as the stability of the various degron constructs which will likely invalidate any results.
Relative Stability Analyzed via Flow Cytometry
Flow cytometry is a high throughput method of analyzing cells for various optical outputs, namely fluorescnce. A flow cytometer is an analytical instrument in which cells that have been suspended in a solution are passed through a narrow channel in which fluorescence of invidual cells can be measured.
By utilizing Flow Cytometry, we can measure the amount of GFP output within cells from each degron construct. Based on where the Degron is inserted, we expected a different level of fluorescence. As such, we expected to see the highest GFP production in our Deg0 construct, as it only contains the Gal4-Protein-VP16 complex with no Degron inserted, hence being the most stable. We expected that Deg2 and Deg3 would have a lower GFP production than Deg0 but higher than Deg1 and Deg4. This rationale was based on the fact that the Deg1 and Deg4 have the Degron exposed, making it more likely to be degraded by ubiquitination than in Deg2 and Deg3 which has the Degron buried inside the Gal4-Protein-VP16 complex.
Mutagenesis through Error Prone Polymerase Chain Reactions (E-PCRs)
In order to validate our system as being capable of selecting more stable protein variants, we have to produce mutations in our protein of interest. Those mutations could potentially be beneficial and could carry a stabilizing affect on the protein of interest. Error-prone PCR utilizes DNA-polymerase's error-prone nature and further increases the likelyhood of mutations by manipulating the conditions in which, DNA-polymerase operates in, thereby causing the polymerase to create errors in DNA sequencing which in turn will create changes in the protein construct. Once, the DNA coding of our protein has been changed we can express the mutations and analyze those stabilizing or de-stabilizing affects they have on our protein. The possible mutations can then be analyzed using the degron system and more stable mutations can be easily seen then sequenced.
Selecting Stable Variants through Fluorescence Activated Cell Sorting (F.A.C.S.)
In order to validate our system as being capable of selecting more stable protein variants, we have to produce mutations in our protein of interest. Those mutations could potentially be beneficial and could carry a stabilizing affect on the protein of interest. Error-prone PCR utilizes DNA-polymerase's error-prone nature and further increases the likelyhood of mutations by manipulating the conditions in which, DNA-polymerase operates in, thereby causing the polymerase to create errors in DNA sequencing which in turn will create changes in the protein construct. Once, the DNA coding of our protein has been changed we can express the mutations and analyze those stabilizing or de-stabilizing affects they have on our protein. The possible mutations can then be analyzed using the degron system and more stable mutations can be easily seen through FACS (see below) then subsequently sequenced. As we sequence the various mutants, we are also looking for convergence in which the genetic sequence as well as the amino acid sequences converge on a single or a few mutations that lead to significantly higher fluorescence and therefore, higher stability.