Team:ATOMS-Turkiye/BioBricks
From 2014.igem.org
Line 53: | Line 53: | ||
<ul> | <ul> | ||
<li><b>SOD is a powerful and essential antioxidant enzyme</b> which converts and scavenges free radicals and reactive oxygen species (ROS) into hydrogen peroxide (H2O2), slightly less harmful compound in order to convey it to the second step reaction which detoxifies H2O2 into water. (Batelli et al. 1972; Baudry et al. 1993; Gonzalez et al. 1995; Doctrow et al. 1996) </li> | <li><b>SOD is a powerful and essential antioxidant enzyme</b> which converts and scavenges free radicals and reactive oxygen species (ROS) into hydrogen peroxide (H2O2), slightly less harmful compound in order to convey it to the second step reaction which detoxifies H2O2 into water. (Batelli et al. 1972; Baudry et al. 1993; Gonzalez et al. 1995; Doctrow et al. 1996) </li> | ||
- | <li>In our body cells, there are three different subtypes of SOD enzyme in different cellular levels. SOD-1 exists in cytoplasm, SOD-2 in mitochondria and SOD-3 is in extracellular matrix. We have chosen SOD-1 to take advantage of easy interference and activity capacity due to its location. Additionally<a name=" | + | <li>In our body cells, there are three different subtypes of SOD enzyme in different cellular levels. SOD-1 exists in cytoplasm, SOD-2 in mitochondria and SOD-3 is in extracellular matrix. We have chosen SOD-1 to take advantage of easy interference and activity capacity due to its location. Additionally<a name="gpx"></a>, <b>there is evidence in the literature for the synthetic production of SOD-1 enzyme by transfecting human cells.</b> (Shuvaev et al. 2013)</li> |
</ul> | </ul> |
Revision as of 21:18, 15 October 2014
BioBricks
style="text-indent:20px">
General design of our project has been architected; thus it is the time to learn more about the individual parts of the big picture.
Hypoxia Respond Element (HRE)
Oxygen Dependent Degradation Domain (ODD)
Tissue Plasminogen Activator (tPA)
Superoxide Dismutase-1 (SOD-1)
Glutathione peroxidase-1 (GPx-1)
Aprotinin
Kappa-B Respond Element (kB-RE)
Composite Parts
References
• Semenza G.L., Wang G.L. 1992. “A Nuclear Factor Induced by Hypoxia via De Novo Protein Synthesis Binds to the Human Erythropoietin Gene Enhancer at a Site Required for Transcriptional Activation”, Molecular and Cellular Biology, 12(12), 5447-5454.
• Tang Y., Jackson M. Qian K. Ian Phillips M. 2002, “Hypoxia Inducible Double Plasmid System for Myocardial Ischemia Gene Therapy”, Hypertension, 39, 695-698.
• In literature, a similar approach has been conducted successfully by inserting ODD into GAL4-p65 protein complex to induce a hypoxia-driven expression in human cells. (Tang et al. 2005; Fomicheva et al. 2008) We want to re-design this approach and implement it into our plasmid constructs to carry out a maximum capacity hypoxia-driven treatment system.
• Huang, L.E., Gu,J. Schau M. Bunn, H.F. 1998. “Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway”, Proc Natl Acad Sci USA, 95, 7987–7992.
• Tang Y.L., Tang Y. Zhang Y.C. Agarwal A. Kasahara H. Qian K. Shen L. Phillips M.I. 2005. “A hypoxia-inducible vigilant vector system for activating therapeutic genes in ischemia”, Gene Therapy, 12, 1163-1170.
• Fomicheva E.V., Turner I.I. Edwards T.G. Hoff J. Arden E. D’Alecy L.G.D. Metzger J.M. 2008. “Double Oxygen–sensing Vector System for Robust Hypoxia/Ischemia-regulated Gene Induction in Cardiac Muscle In Vitro and In Vivo”, Molecular Therapy”, 16(9), 1594-1601.
• IUBMB Enzyme Nomenclature. “t-Plasminogen Activator”, http://www.chem.qmul.ac.uk/iubmb/enzyme/EC3/4/21/68.html, last reviewed: 1992.
• MetaCyc, “t-Plasminogen Activator”, http://www.metacyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-3.4.21.68, last reviewed: 26 August 2014.
• Pennica D., Holmes W.E, Kohr W.J. Harkins R.N. Vehar G.A. Ward C.A. Bennett W.F. Yelverton E. Seeburg P.H. Heyneker H.L. Goeddel D.V. Collen D. 1983. “Cloning and expression of human tissue-type plasminogen activator cDNA in E. Coli”.Nature, 301, 214–221.
• Van de Werf F, Bergmann S.R. Fox K.A.A. de Geest H. Hoyng C.F. Sobel B.E. Collen D. 1984. “Coronary thrombolysis with intravenously administered human tissue-type plasminogen activator produced by recombinant DNA technology”, Circulation. 69, 605–610.
• Battelli M.G., Corte E.D. Stirpe F. 1972. “Xanthine oxidase type D (dehydrogenase) in the intestine and other organs of the rat” Biochem J, 126, 747-749.
• Baudry, M., Etienne S. Bruce A. Palucki M. Jacobsen E. Malfroy B. 1993. “Salen-manganese complexes are superoxide dismutase-mimics”, Biochem. Biophys. Res. Commun. 19, 964–968.
• Gonzalez P.K., Zhuang J. Doctrow S.R. Malfory B. Benson P.F. Menconi M.J. Fink M.P. 1995, “EUK-8, a synthetic superoxide dismutase and catalase mimetic, ameliorates acute lung injury in endotoxemic swine.”, J. Pharmacol. Exp. Ther. 275, 798–806.
• Doctrow S.R., Huffman K. Marcus C.B. Musleh W. Bruce A. Baudry M. Malfroy B. 1996. in Antioxidants in Disease Mechanisms and Therapeutic Strategies, ed. Sies, H. (Academic, New York), 247–269.
• Shuvaev V.V., Han J, Tliba S, Arguiri E, Christofidou-Solomidou M, Ramirez SH, Dykstra H, Persidsky Y, Atochin DN, Huang PL, Muzykantov VR. 2013. “Anti-inflammatory effect of targeted delivery of SOD to endothelium: mechanism, synergism with NO donors and protective effects in vitro and in vivo”. PLoS One, 8(10), p. e77002.
• Taylor S.D., Davenport L.D. Speranza M.J. Mullenbach G.T. Lynch R.E. 1993 “Glutathione peroxidase protects cultured mammalian cells from the toxicity of adriamycin and paraquat”, Arch. Biochem. Biophys. 305, 600–605
• Kelner M.J., Bagnell R.D. Uglik S.F. Montoya M.A. Mullenbach G.T. 1995. “Heterologous expression of selenium- dependent glutathione peroxidase affords cellular resistance to paraquat”. Arch. Biochem. Biophys. 323, 40–46
• Dawson J, Walters M. 2006. "Uric acid and xanthine oxidase: future therapeutic targets in the prevention of cardiovascular disease?". British Journal of Clinical Pharmacology 62 (6): 633–44
• Heunks, LM; Viña, J; van Herwaarden, CL; Folgering, HT; Gimeno, A; Dekhuijzen, PN. 1999. "Xanthine oxidase is involved in exercise-induced oxidative stress in chronic obstructive pulmonary disease.". The American journal of physiology 277 (6 Pt 2): R1697–704
• Higgins, Peter; Dawson, Jesse; Walters, Matthew 2009. "The Potential for Xanthine Oxidase Inhibition in the Prevention and Treatment of Cardiovascular and Cerebrovascular Disease". Cardiovascular Psychiatry and Neurology 2009: 1–9
• Kabe Y., Ando K. Hirao S. Yoshida M. Handa H. 2005. “Redox regulation of NF-kappaB activation: distinct redox regulation between the cytoplasm and the nucleus”, Antioxid Redox Signal. 7, 395– 403.
• Gilmore T.D., 2006. "Introduction to NF-κB: players, pathways, perspectives", Oncogene, 25(51), 6680–6684.
• Bonello S., Zähringer C. BelAiba R.S. Djordjevic T. Hess J. Michiels C. Kietzmann T. Görlach A. 2007. “Reactive Oxygen Species Activate the HIF-1a Promoter Via a Functional NFkB Site”, Jornal of the American Heart Association, 27, 655-761.