Team:Virtus-Parva Mexico/Team
From 2014.igem.org
Tamarasait (Talk | contribs) m |
|||
Line 293: | Line 293: | ||
</div> | </div> | ||
<div class="panel-body"> | <div class="panel-body"> | ||
- | Enthusiast and always willing to lend a hand. Hi! My name is Armando, I currently am 22 years of age, and I’m native from the state of Coahuila, México. Studying the 9th semester of the nanotechnology and molecular engineering baccalaureate at the University of the Americas Puebla (UDLAP). Within the team I am envolved in the organization of Human Practices, as well as starring in the play<i>Copenhage</i>, interpreting the physicist Werner Heisenberg. | + | Enthusiast and always willing to lend a hand. Hi! My name is Armando, I currently am 22 years of age, and I’m native from the state of Coahuila, México. Studying the 9th semester of the nanotechnology and molecular engineering baccalaureate at the University of the Americas Puebla (UDLAP). Within the team I am envolved in the organization of Human Practices, as well as starring in the play <i>Copenhage</i>, interpreting the physicist Werner Heisenberg. |
My inclination towards synthetic biology lies in my growing interest towards the comprehension, mimicry, and incorporation of microscopic organic mechanisms that could be exploited by mankind in order to achieve a better adaptation into our ever changing Mother Nature without procuring harm to it and improving our quality of life. | My inclination towards synthetic biology lies in my growing interest towards the comprehension, mimicry, and incorporation of microscopic organic mechanisms that could be exploited by mankind in order to achieve a better adaptation into our ever changing Mother Nature without procuring harm to it and improving our quality of life. | ||
</div> | </div> |
Revision as of 01:29, 14 October 2014
Virtus Parva
The Power of Small
Who are we?
Virtus-Parva is a team of Nanotechnology students who aim to create a better world through love,sympathy and endearment… and through the design and development of a novel technology based on micrometric “drills” to attack pathogen agents.
Students
Collaborators
Instructors
Meet the Team
Friends and stuff we are so happy... add content
Andrea Díaz Gaxiola
I am Virtus-Parva Team leader, and the responsible for spreading the urge to be a part of iGEM. It is a dream I shared with my friends, and we've all together made it possible.
My vision of the world involves all disciplines working together towards a deeper understanding of ourselves and what surrounds us, creating knowledge but never seeking for absolute truths.
Abraham Mauleon Amieva
Tania Hidlgo Castillo
Sabás Sánchez Tellechea
Diego Rosas Villava
Armando Morín Martínez
Tamara Saitcevsky Parra
Emmanuel Ibarra Salas
The Making
The most important part of our project was the time that we dedicated to seeing results in our lab. Admittedly, it was tough, for we had to do everything in our own time and we had only occasional help from our instructors, for the most part we did everything on our own. Despite all of the size of the challenge, our team rose up to the occasion and in the end all those hours we dedicated in the lab were worth it. Here you can see a short description of what all the things we did in our lab, for a more detailed description check our notebook section.
Inorganic Section
After choosing the best method possible, it was time to silanize our magnetite in order for it to be biocompatible with DNA and be able to tie them together. In order for the silanization to take place, we used a solution of TEOS (tetraethoxysilane) dispersed in a medium of water and propanol and dripped this mix slowly onto our magnetite. Just like when we synthesized our particles, we tested different concentrations of TEOS and magnetite, as well as different addition rates in order to observe which combination would give us the smallest possible nanoparticles.
Our results were then characterized by DLS (dynamic light scattering), for which we observed a peak at 39 nm, once coated with TEOS, the peak was moved toward 60 and 80 nm. We also ran our two samples in the IR, comparing the spectra of the pure magnetite and silanized magnetite, we were able to distinguish a peak at 990.2 cm^-1 corresponding to a Si-O bond, confirming the correct silanization of the magnetite.
Biological Section
We then needed to grow and then extract from E. Coli the DNA we were to use for the rest of our project. We tested two different methods: one of which was the well-known mini prep and the other was very similar but without using an enzyme. Using the DNA we have extracted, we then needed to transform these cells to make competent cells.
These cells we had transformed, we then had to purify, by precipitating in presence of ethanol and centrifugation to eliminate supernatant. We did different dilutions of DNA and combined them with our protein, HU. These as well were divided again in gluteraldehyde and no gluteraldehyde and subsecuently in DNA and not DNA. We did some UV characterization for all samples. We discovered that the solutions with glutaraldehyde had stronger bonds between DNA and HU. We prepared some samples: one with glutaraldehyde and DNA-Hu, another just with glutaraldehyde and DNA, the third one just with DNA-HU and the last one just with DNA and prepared them with nanoparticles and ran them through UV.