Team:HokkaidoU Japan/Projects/H Stem
From 2014.igem.org
(Difference between revisions)
Line 50: | Line 50: | ||
- | \[ y=\frac{1}{2} \ | + | \[ y=\frac{1}{2} \bigl\{ \bigl\} \] |
\root{(a-1+\frac{b}{\gamma})^2 +4 \frac{b}{\gamma}} - (a-1+\frac{b}{\gamma}) \right] | \root{(a-1+\frac{b}{\gamma})^2 +4 \frac{b}{\gamma}} - (a-1+\frac{b}{\gamma}) \right] |
Revision as of 09:32, 13 October 2014
Over View
How To Use
Modelling
\[ \zeta(s) = \sum_{n=1}^\infty\frac{1}{n^s} \]
\[ \sigma_1 = \left(
\matrix{ 0 & 1 \cr
1 & 0 } \right),
\sigma_2 = \left(
\matrix{ 0 & -i \cr
i & 0 } \right),
\sigma_3 = \left(
\matrix{ 1 & 0 \cr
0 & -1} \right)
は,以下の式を満たす.
\left[ \frac{\sigma_i}{2}~,~\frac{\sigma_j}{2} \right] = i\varepsilon_{ijk} \frac{\sigma_k}{2} \]
\[ X+Y \overset{k_{unbind}}{\underset{k_{bind}}{\rightleftharpoons}} Z \]
\begin{cases}
\dot{x}=a-bx-k_{bind}xy+k_{unbind}z & \\
\dot{y}=1-y-k_{bind}xy+k_{unbind}z & \\
\dot{z}=k_{bind}xy-k_{unbind}z-cz &
\end{cases}
\[ y=\frac{1}{2} \bigl\{ \bigl\} \]
\root{(a-1+\frac{b}{\gamma})^2 +4 \frac{b}{\gamma}} - (a-1+\frac{b}{\gamma}) \right]