Team:HokkaidoU Japan/Projects/H Stem

From 2014.igem.org

(Difference between revisions)
Line 50: Line 50:
-
\[ y=\frac{1}{2} { \root{(a-1+\frac{b}{\gamma})^2 +4 \frac{b}{\gamma}} - (a-1+\frac{b}{\gamma})} \]
+
\[ y=\frac{1}{2} \left{ \root{(a-1+\frac{b}{\gamma})^2 +4 \frac{b}{\gamma}} - (a-1+\frac{b}{\gamma}) \right} \]

Revision as of 09:17, 13 October 2014

Over View

How To Use

Modelling

Detail
\[ \zeta(s) = \sum_{n=1}^\infty\frac{1}{n^s} \] \[ \sigma_1 = \left( \matrix{ 0 & 1 \cr 1 & 0 } \right), \sigma_2 = \left( \matrix{ 0 & -i \cr i & 0 } \right), \sigma_3 = \left( \matrix{ 1 & 0 \cr 0 & -1} \right) は,以下の式を満たす. \left[ \frac{\sigma_i}{2}~,~\frac{\sigma_j}{2} \right] = i\varepsilon_{ijk} \frac{\sigma_k}{2} \] \[ X+Y \overset{k_{unbind}}{\underset{k_{bind}}{\rightleftharpoons}} Z \] \begin{cases} \dot{x}=a-bx-k_{bind}xy+k_{unbind}z & \\ \dot{y}=1-y-k_{bind}xy+k_{unbind}z & \\ \dot{z}=k_{bind}xy-k_{unbind}z-cz & \end{cases} \[ y=\frac{1}{2} \left{ \root{(a-1+\frac{b}{\gamma})^2 +4 \frac{b}{\gamma}} - (a-1+\frac{b}{\gamma}) \right} \]