Team:StanfordBrownSpelman/Biodegradability
From 2014.igem.org
(Difference between revisions)
Line 131: | Line 131: | ||
Once we had isolated our protein we were able to do functional assays with the esterase enzyme. By using a cellulose-binding dye that selectively binds to cellulose and not cellulose acetate, we were able to test whether or not the esterase enzyme was effective in de-acetylating commercial grade cellulose acetate. We soaked the cellulose acetate in the esterase protein at its optimal temperature of 30ºC and tested with the stain at multiple points. The results of our assay (shown below) demonstrate that over time the protein was working to degrade the cellulose acetate, as the blue stain intensity increased over time. | Once we had isolated our protein we were able to do functional assays with the esterase enzyme. By using a cellulose-binding dye that selectively binds to cellulose and not cellulose acetate, we were able to test whether or not the esterase enzyme was effective in de-acetylating commercial grade cellulose acetate. We soaked the cellulose acetate in the esterase protein at its optimal temperature of 30ºC and tested with the stain at multiple points. The results of our assay (shown below) demonstrate that over time the protein was working to degrade the cellulose acetate, as the blue stain intensity increased over time. | ||
- | |||
- | |||
[[File:Celluloseacetateassay.jpg]] | [[File:Celluloseacetateassay.jpg]] | ||
- | |||
- | |||
We are currently working on functional assays of the cellulase gene, and have submitted it as a BioBrick (BBa_K1499501). | We are currently working on functional assays of the cellulase gene, and have submitted it as a BioBrick (BBa_K1499501). |
Revision as of 09:06, 13 October 2014
Biodegradability
Creating a biodegradable drone will reduce collateral waste, lightening the footprint of unmanned science missions on planetary environments and microecosystems. Since we are using BCOAc for the construction of our drone, we plan on transforming E. coli with two genes obtained from Niesseria sicca, which synthesizes enzymes capable of degrading BCOAc; the first gene is an esterase which deacetylates the BCOAc, and the second is endo-1,4-beta-glucanase, a cellulase which speeds BC degradation. In order to trigger the onset and spread of degradation, we are investigating pressure-sensitive promoters (to simulate impact) and time-sensitive promoters linked to bacterial quorum sensing machinery. Quorum sensing allows the signal for degradation to spread to surrounding cells, enabling the complete breakdown of our biomaterials from a single point of impact.
Image description goes here.
Image description goes here.
Image description goes here.
Image description goes here.