Team:UCLA

From 2014.igem.org

(Difference between revisions)
Line 22: Line 22:
<br/>
<br/>
 +
<h2>Abstract</h2>
 +
<p>Spiders have evolved an arsenal of silk threads for various applications, using combinations of highly-repetitive silk proteins. These fibers have an extremely high range of tensile strength and elasticity, and along with their low immunogenicity, are desired by the military, medical, and fashion industries. However, spider silk farming is impractical, and alternatives are necessary for large-scale production. Inspired by nature’s design, we aim to engineer E. coli to produce genetically programmed synthetic fibers, and standardize the customization of their physical and functional properties. We have adapted Iterative Capped Assembly to modularize and flexibly control the assembly of silk domains that confer strength or elasticity in specific ratios. Varying the composition of the silk genes, or adding other functional proteins will allow precise fine-tuning of the resulting properties, and expand their practical utility. This platform can be readily applied to assemble other highly-repetitive proteins, or large genes from libraries of parts.</p>
<!--SUMMARY TILES-->
<!--SUMMARY TILES-->
Line 84: Line 86:
<!--requirements section -->
<!--requirements section -->
-
<tr><td colspan="3"> <h3> Requirements </h3></td></tr>
+
<tr><td colspan="3">Spiders have evolved an arsenal of silk threads for various applications, using combinations of highly-repetitive silk proteins. These fibers have an extremely high range of tensile strength and elasticity, and along with their low immunogenicity, are desired by the military, medical, and fashion industries. However, spider silk farming is impractical, and alternatives are necessary for large-scale production. Inspired by nature’s design, we aim to engineer E. coli to produce genetically programmed synthetic fibers, and standardize the customization of their physical and functional properties. We have adapted Iterative Capped Assembly to modularize and flexibly control the assembly of silk domains that confer strength or elasticity in specific ratios. Varying the composition of the silk genes, or adding other functional proteins will allow precise fine-tuning of the resulting properties, and expand their practical utility. This platform can be readily applied to assemble other highly-repetitive proteins, or large genes from libraries of parts.
-
<tr>
+
-
<td width="45%"  valign="top">
+
-
<p> Please be sure to keep these links, your audience will want to find your: </p>
 
-
 
-
<!-- Links to other team pages -->
 
-
<ul>
 
-
<li><a href="https://2014.igem.org/Team:UCLA">Home</a> </li>
 
-
<li><a href="https://2014.igem.org/Team:UCLA/Team">Team</a> </li>
 
-
<li><a href="https://igem.org/Team.cgi?year=2013&team_name=UCLA">Official Team Profile</a> </li>
 
-
<li><a href="https://2014.igem.org/Team:UCLA/Project">Project</a> </li>
 
-
<li><a href="https://2014.igem.org/Team:UCLA/Parts">Parts</a> </li>
 
-
<li><a href="https://2014.igem.org/Team:UCLA/Modeling">Modeling</a> </li>
 
-
<li><a href="https://2014.igem.org/Team:UCLA/Notebook">Notebook</a> </li>
 
-
<li><a href="https://2014.igem.org/Team:UCLA/Safety">Safety</a> </li>
 
-
<li><a href="https://2014.igem.org/Team:UCLA/Attributions">Attributions</a> </li>
 
-
 
-
</ul>
 
-
 
-
</td>
 
-
 
-
<td > </td>
 
-
<td width="45%">
 
-
 
-
<p>There are a few wiki requirements teams must follow:</p>
 
-
<ul>
 
-
<li>All pages, images and files must be hosted on the <a href ="https://2014.igem.org/Special:Upload">  2014.igem.org server</a>. </li>
 
-
<li>All pages must be created under the team’s name space.</li>
 
-
<li>As part of your documentation, keep the links from the menu to the left. </li>
 
-
<li>Do not use flash in wiki code. </li>
 
-
<li>The <a href="https://static.igem.org/mediawiki/igem.org/6/60/Igemlogo_300px.png"> iGEM logo </a> should be placed on the upper part of every page and should link to <a href="https://2014.igem.org/Main_Page">2014.igem.org</a>.</li>
 
-
</ul>
 
-
<p>Visit the <a href="https://2014.igem.org/Wiki_How-To"> Wiki How To page </a> for a complete list of requirements, tips and other useful information. </p>
 
-
 
-
</td>
 
-
</tr>
 
-
 
-
 
-
<tr> <td colspan="3"  height="15px"> </td></tr>
 
-
<tr><td bgColor="#e7e7e7" colspan="3" height="1"> </tr>
 
-
 
-
 
-
<!--tips  -->
 
-
<tr><td colspan="3" > <h3> Tips  </h3></td></tr>
 
-
 
-
<tr>
 
-
<td width="45%" valign="top">
 
-
<p>We are currently working on providing teams with some easy to use design templates.
 
-
<br> In the meantime you can also view other team wikis for inspiration! Here are some very good examples</p>
 
-
 
-
<ul>
 
-
<li> <a href="https://2013.igem.org/Team:SDU-Denmark/"> 2013 SDU Denmark </a> </li>
 
-
<li> <a href="https://2013.igem.org/Team:SYSU-China">2013 SYSU China</a> </li>
 
-
<li> <a href="https://2013.igem.org/Team:Shenzhen_BGIC_ATCG"> 2013 Shenxhen BGIG ATCG </a></li>
 
-
<li> <a href="https://2013.igem.org/Team:Colombia_Uniandes">2013 Colombia Unianades </a></li>
 
-
<li> <a href="https://2013.igem.org/Team:Lethbridge">2013 Lethbridge</a></li>
 
-
</ul>
 
-
 
-
<p>For a full wiki list, you can visit <a href="https://igem.org/Team_Wikis?year=2013">iGEM 2013 web sites </a> and <a href="https://igem.org/Team_Wikis?year=2012">iGEM 2012 web sites</a>  lists. </p>
 
-
</td>
 
-
 
-
<td> </td>
 
-
<td width="45%">
 
-
 
-
<p>This wiki will be your team’s first interaction with the rest of the world, so here are a few tips to help you get started: </p>
 
-
 
-
<ul>
 
-
<li>State your accomplishments! Tell people what you have achieved from the start. </li>
 
-
<li>Be clear about what you are doing and what you plan to do.</li>
 
-
<li>You have a global audience! Consider the different backgrounds that your users come from.</li>
 
-
<li>Make sure information is easy to find; nothing should be more than 3 clicks away.  </li>
 
-
<li>Avoid using very small fonts and low contrast colors; information should be easy to read.  </li>
 
-
<li>Start documenting your project as early as possible; don’t leave anything to the last minute before the Wiki Freeze. For a complete list of deadlines visit the <a href="">iGEM 2013 calendar</a> </li>
 
-
<li>Have lots of fun! </li>
 
-
</ul>
 
-
</br>
 
-
</td>
 
</tr>
</tr>
</table>
</table>

Revision as of 01:57, 17 October 2014

iGEM UCLA







Abstract

Spiders have evolved an arsenal of silk threads for various applications, using combinations of highly-repetitive silk proteins. These fibers have an extremely high range of tensile strength and elasticity, and along with their low immunogenicity, are desired by the military, medical, and fashion industries. However, spider silk farming is impractical, and alternatives are necessary for large-scale production. Inspired by nature’s design, we aim to engineer E. coli to produce genetically programmed synthetic fibers, and standardize the customization of their physical and functional properties. We have adapted Iterative Capped Assembly to modularize and flexibly control the assembly of silk domains that confer strength or elasticity in specific ratios. Varying the composition of the silk genes, or adding other functional proteins will allow precise fine-tuning of the resulting properties, and expand their practical utility. This platform can be readily applied to assemble other highly-repetitive proteins, or large genes from libraries of parts.


Spiders have evolved an arsenal of silk threads for various applications, using combinations of highly-repetitive silk proteins. These fibers have an extremely high range of tensile strength and elasticity, and along with their low immunogenicity, are desired by the military, medical, and fashion industries. However, spider silk farming is impractical, and alternatives are necessary for large-scale production. Inspired by nature’s design, we aim to engineer E. coli to produce genetically programmed synthetic fibers, and standardize the customization of their physical and functional properties. We have adapted Iterative Capped Assembly to modularize and flexibly control the assembly of silk domains that confer strength or elasticity in specific ratios. Varying the composition of the silk genes, or adding other functional proteins will allow precise fine-tuning of the resulting properties, and expand their practical utility. This platform can be readily applied to assemble other highly-repetitive proteins, or large genes from libraries of parts.