Team:Yale/Project
From 2014.igem.org
Line 135: | Line 135: | ||
<h1 style="margin-top:25px; margin-bottom:45px; font-size:35px">Project Overview</h1> | <h1 style="margin-top:25px; margin-bottom:45px; font-size:35px">Project Overview</h1> | ||
</div> | </div> | ||
+ | <div class = "well"> | ||
<p> | <p> | ||
<strong>Biofilm formation on surfaces is an issue in the medical field, naval industry, and other areas. </strong><br /> | <strong>Biofilm formation on surfaces is an issue in the medical field, naval industry, and other areas. </strong><br /> | ||
Line 140: | Line 141: | ||
</p> | </p> | ||
</td> | </td> | ||
- | + | </div> | |
</tr> | </tr> | ||
<tr> | <tr> | ||
<td colspan="12"> | <td colspan="12"> | ||
<h1 style="margin-top:25px; margin-bottom:45px; font-size:35px">Project Goals</h1> | <h1 style="margin-top:25px; margin-bottom:45px; font-size:35px">Project Goals</h1> | ||
+ | <div class = "well"> | ||
<p> | <p> | ||
<strong>1. Create a T7 Riboregulation System to control the expression of our proteins:</strong> | <strong>1. Create a T7 Riboregulation System to control the expression of our proteins:</strong> | ||
Line 156: | Line 158: | ||
In order to carry this out, we used the foot protein consensus sequence mefp 1-mgfp 5-mefp-1, which was found to be effective in Lee et al., 2008. At the N-terminus is the twin Strep-FLAG tag (using Strep tag for purification, and FLAG tag for easy cleavage). Then, the LL-37 antimicrobial peptide (AMPs are generally short enough to be inserted via primer overhang) is present on a long 36 residue linker. On the other side of the foot protein is sfGFP connected by a shorter linker. With targeted primers, the construct can be amplified in its entirety, or only with the AMP or GFP segment (Show Figure 6). | In order to carry this out, we used the foot protein consensus sequence mefp 1-mgfp 5-mefp-1, which was found to be effective in Lee et al., 2008. At the N-terminus is the twin Strep-FLAG tag (using Strep tag for purification, and FLAG tag for easy cleavage). Then, the LL-37 antimicrobial peptide (AMPs are generally short enough to be inserted via primer overhang) is present on a long 36 residue linker. On the other side of the foot protein is sfGFP connected by a shorter linker. With targeted primers, the construct can be amplified in its entirety, or only with the AMP or GFP segment (Show Figure 6). | ||
</p> | </p> | ||
+ | <p> | ||
<strong>3. Develop an erosion rig to assess the strength of the adhesive peptide:</strong> | <strong>3. Develop an erosion rig to assess the strength of the adhesive peptide:</strong> | ||
<br /> | <br /> | ||
(Show figure 8) First, we will need to determine if we have adhered material present in various solutions and surfaces. In order to these this out, we will look at the contact angle measurement. Surfaces that are wet will have a very shallow contact angle because the surface absorbs the test liquid. Non-wetting surfaces will usually exhibit an obtuse contact angle because there is no absorption. This test will determine if our coating is present and does not dissolve when wet. As a further test to determine if the material is able to adhere to surfaces, we will use Fourier Transform Infrared Spectroscopy (FTIR). The adhesive should exhibit a different spectrum than uncured adhesive. This difference probably lies in the different vibrational bond energies caused by coordination or bonding to our surface. The next assessment will be to determine how much coating is retained under stress with atomic force microscopy (AFM). A probe will be applied to the sample to determine the force between the atoms of the sample and the atoms of the tip. Image contrast can then be generated by monitoring the forces of the interactions between the tip and the peptide’s surface. | (Show figure 8) First, we will need to determine if we have adhered material present in various solutions and surfaces. In order to these this out, we will look at the contact angle measurement. Surfaces that are wet will have a very shallow contact angle because the surface absorbs the test liquid. Non-wetting surfaces will usually exhibit an obtuse contact angle because there is no absorption. This test will determine if our coating is present and does not dissolve when wet. As a further test to determine if the material is able to adhere to surfaces, we will use Fourier Transform Infrared Spectroscopy (FTIR). The adhesive should exhibit a different spectrum than uncured adhesive. This difference probably lies in the different vibrational bond energies caused by coordination or bonding to our surface. The next assessment will be to determine how much coating is retained under stress with atomic force microscopy (AFM). A probe will be applied to the sample to determine the force between the atoms of the sample and the atoms of the tip. Image contrast can then be generated by monitoring the forces of the interactions between the tip and the peptide’s surface. | ||
+ | </p> | ||
+ | </div> | ||
</td> | </td> | ||
</tr> | </tr> |
Revision as of 19:39, 12 October 2014
Ampersand: an Anti-Microbial Peptide Coating |
|||||||||||
Project Overview
Biofilm formation on surfaces is an issue in the medical field, naval industry, and other areas. |
|||||||||||
Project Goals
1. Create a T7 Riboregulation System to control the expression of our proteins:
2. Design the anti-biofouling peptide using both a modular approach.
3. Develop an erosion rig to assess the strength of the adhesive peptide:
|
|||||||||||
Introduction
Biofilm formation: A problem in clinics and cargo ships
An improved T7 Riboregulation System
A DOPA-containing peptide derived from mussel foot protein
Anti-biofouling Peptide: LL-37 |
|||||||||||
T7 Riboregulation System: Experimental Design
Strains, Plasmids, and Reagents
Two Levels of Regulation for T7 Polymerase Expression |
|||||||||||
Anti-Fouling Peptide Construct: Experimental DesignWe hypothesize that we can develop an improved version of the current adhesives by developing a fusion protein of Mgfp-5 with Mefp-1 as the anchoring region for the anti-biofouling peptide. An integral part of developing this peptide is to co-translationally insert L-DOPA into our peptide, which has never been done before with mussel foot proteins (Figure 5). In this process of orthogonal translation, we first will get rid of the UAG stop codon and then transform the strain to synthesize tRNA and tRNA transferase that corresponds to the UAG codon and the L-DOPA non-standard amino acid to develop the GRO. The advantage of this procedure is that we have the ability to skip the time-consuming and inefficient tyrosinase enzyme treatment step.
Protein Purification
We plan to purify the protein by using the Twin Strep Tag in tandem with the Flag tag, which was included in out master construct of the anti-biofouling peptide (Figure 6). The Flag tag is perfectly cleavable by the enzyme enterokinase. The FLAG tag is made up of 8 amino acids and works well for low-abundance proteins. It is hydrophilic, so it will most likely not interfere with protein folding and function of the target protein. The Strep tag is also made up of 8 amino acids that will not disturb the protein’s functions. We chose the FLAG tag because it is perfectly cleavable. Info on LL-37 and N-terminus? The protein will be purified in a Strep-Tactin® Sepharose® column. In order to address the L-DOPA adhesive L-DOPA component, our final step is to elute with a base to reduce the amount of the anti-biofouling peptide that sticks to the column due to L-DOPA adhesion (Figure 7).
|
|||||||||||
Characterization of Coating Adhesion PropertiesWe hypothesize that we can develop an improved version of the current adhesives by developing a fusion protein of Mgfp-5 with Mefp-1 as the anchoring region for the anti-biofouling peptide. An integral part of developing this peptide is to co-translationally insert L-DOPA into our peptide, which has never been done before with mussel foot proteins (Figure 5). In this process of orthogonal translation, we first will get rid of the UAG stop codon and then transform the strain to synthesize tRNA and tRNA transferase that corresponds to the UAG codon and the L-DOPA non-standard amino acid to develop the GRO. The advantage of this procedure is that we have the ability to skip the time-consuming and inefficient tyrosinase enzyme treatment step.
Protein Purification
We plan to purify the protein by using the Twin Strep Tag in tandem with the Flag tag, which was included in out master construct of the anti-biofouling peptide (Figure 6). The Flag tag is perfectly cleavable by the enzyme enterokinase. The FLAG tag is made up of 8 amino acids and works well for low-abundance proteins. It is hydrophilic, so it will most likely not interfere with protein folding and function of the target protein. The Strep tag is also made up of 8 amino acids that will not disturb the protein’s functions. We chose the FLAG tag because it is perfectly cleavable. Info on LL-37 and N-terminus? The protein will be purified in a Strep-Tactin® Sepharose® column. In order to address the L-DOPA adhesive L-DOPA component, our final step is to elute with a base to reduce the amount of the anti-biofouling peptide that sticks to the column due to L-DOPA adhesion (Figure 7).
|