Team:EPF Lausanne/Microfluidics/Making/PartI
From 2014.igem.org
Arthurgiroux (Talk | contribs) |
|||
Line 102: | Line 102: | ||
The following processes will explain the making of a mask and a positive/negative resist wafer.</p> | The following processes will explain the making of a mask and a positive/negative resist wafer.</p> | ||
- | <p class="lead">A wafer is used as a mold to make the microfluidic layer.</p> | + | <p class="lead">A mask is used as a mold to make a wafer, and a wafer is used as a mold to make the microfluidic layer.</p> |
<p class="lead">A photoresist is a light-sensitive material used in several industrial processes, such as photolithography and photoengraving to form a patterned coating on a surface:</p> | <p class="lead">A photoresist is a light-sensitive material used in several industrial processes, such as photolithography and photoengraving to form a patterned coating on a surface:</p> |
Revision as of 21:55, 11 October 2014
The following processes will explain the making of a mask and a positive/negative resist wafer.
A mask is used as a mold to make a wafer, and a wafer is used as a mold to make the microfluidic layer.
A photoresist is a light-sensitive material used in several industrial processes, such as photolithography and photoengraving to form a patterned coating on a surface:
-A negative resist is a type of photoresist in which the portion of the photoresist that is exposed to light crosslinks and thus becomes insoluble to the photoresist developer. The unexposed portion of the photoresist is dissolved by the photoresist developer.
- A positive resist is a type of photoresist in which the portion of the photoresist that is exposed to light becomes soluble to the photoresist developer. The portion of the photoresist that is unexposed remains insoluble to the photoresist developer.
Mask process and outline
Control Layer Process outline
Step | Process description | Machines | Cross-section after process |
---|---|---|---|
01 | Substrate: Wafer Clean | Tepla 300 |
Clean the wafer using plasma treatment |
02 | Photolith: Resist deposition Photo Resist : Su8 GM1070 – 30μm | Sawatec |
A layer of negative photoresist is added on the wafer by spincoating |
03 | Relaxation time + Softbake | Sawatec |
Softbake wafer using Sawatec hotplate, to solidify the photo resist |
04 | Photolith:UV exposure | Mask Aligner |
The UV lights are exposed through the Mask on the surface of the wafer. By doing so, it imprints the pattern of the design on the PR. |
05 | Post exposure bake | Sawatec |
Bake wafer using Sawatec hotplate |
06 | Relaxation delay | Wait 1 hour – overnight | |
07 | Photolith: Develop | Wetbench plane solvent |
This removes the unexposed photoresist from the wafer using chemical treatment on a wet bench |
08 | Hard bake | DataPlate |
Bake 135°C 2 hours, using an oven |