Team:EPF Lausanne

From 2014.igem.org

(Difference between revisions)
Line 121: Line 121:
<br /><br />
<br /><br />
-
As a proof-of-concept, we aimed to develop the first BioPad: a biological TouchPad made of touch-responsive bacteria in a microfluidic chip allowing the control of electronic devices. This was achieved by engineering the E.Coli Cpx Pathway – a two-component regulatory system that is responsive to periplasmic stress.</p>
+
As a proof-of-concept, we aimed to develop the first BioPad: a biological TouchPad made of touch-responsive bacteria in a microfluidic chip allowing the control of electronic devices. This was achieved by engineering the E.Coli Cpx Pathway – a two-component regulatory system that is responsive to periplasmic stress - and S Cerevisiae HOG Pathway. Learn more about it in the <a target="_blank" href="https://2014.igem.org/Team:EPF_Lausanne/Overview">here</a>.</p>
Line 145: Line 145:
<h2>The BioPad's Applications</h2>
<h2>The BioPad's Applications</h2>
-
  <p class="lead">With respect to basic sciences, the BioPad demonstrates that protein complementation techniques are suitable for biosensors – especially for two-component regulatory systems. The introduction of the split IFP1.4 into the registry will allow future iGEM and research teams to take advantage of the reversibility and precision of this protein. Moreover, our work on the Cpx pathway will allow future iGEM teams to make novel uses of other members of this subfamily, as well as other two-component regulatory systems.  
+
  <p class="lead">With respect to basic sciences, the BioPad demonstrates that protein complementation techniques are suitable for biosensors – especially for two-component regulatory systems. The introduction of the split IFP1.4 (infrared fluorescent protein) into the registry will allow future iGEM and research teams to take advantage of the reversibility and precision of this protein. Moreover, our work on the Cpx pathway will allow future iGEM teams to make novel uses of other members of this subfamily, as well as other two-component regulatory systems.  
<!--Moreover, our work on the Cpx pathway will allow future iGEM teams to use other members of the OmpR/PhoB subfamily as well as other two-component regulatory systems in new ways. -->
<!--Moreover, our work on the Cpx pathway will allow future iGEM teams to use other members of the OmpR/PhoB subfamily as well as other two-component regulatory systems in new ways. -->
<br /><br />
<br /><br />
-
As for applied sciences, the BioPad could be used to deliver a cheap, fast, efficient, and accurate antibiotic screening system allowing researchers to easily quantify the effects of antibiotics on gram-negative bacteria. The BioPad project could also be the source of an "antibiotic complement" drug increasing the efficiency of pre-existing antibiotics. Moreover, the Biopad could provide a new approach to studying genes by allowing researchers to examine the relationship between genes and their corresponding activating signals.</p>
+
As for applied sciences, the BioPad could be used to deliver a cheap, fast, efficient, and accurate antibiotic screening system allowing researchers to easily quantify the effects of antibiotics on gram-negative bacteria. The BioPad project could also be the source of an "antibiotic complement" drug increasing the efficiency of pre-existing antibiotics. Moreover, the Biopad could provide a new approach to studying genes by allowing researchers to examine the relationship between genes and their corresponding activating signals. Learn more about the applications of the project <a target="_blank" href="https://2014.igem.org/Team:EPF_Lausanne/Applications">here</a>.</p>
- TALK ABOUT SPEED INCREASE
- TALK ABOUT SPEED INCREASE
-
- INTEGRATE MICROFLUIDICS + YEAST
 
- PUT IN LINKS FOR OTHER PAGES
- PUT IN LINKS FOR OTHER PAGES

Revision as of 22:08, 11 October 2014

Our project in a nutshell


Summary of our Project

EPFL_interaction_IFP_cartoon

The 2014 EPFL iGEM team has been working on showing that biologically engineered organisms can detect and process signals quickly and efficiently. With this in mind, our team brought forward a novel idea: combining Protein Complementation techniques with biosensors to achieve fast spatiotemporal analysis of bacterial response to stimuli.

As a proof-of-concept, we aimed to develop the first BioPad: a biological TouchPad made of touch-responsive bacteria in a microfluidic chip allowing the control of electronic devices. This was achieved by engineering the E.Coli Cpx Pathway – a two-component regulatory system that is responsive to periplasmic stress - and S Cerevisiae HOG Pathway. Learn more about it in the here.

Why a BioPad?

Microfluidics

The biological concepts behind the BioPad project have applications in basic and applied sciences. From a scientific perspective, the ideas introduced and implemented by our project are novel and promising for future applications. The BioPad is also an interesting concept that will encourage public awareness of synthetic biology. The tangibility of the project will allow the general public to look at synthetic biology in a better way, as people will understand how great genetically modified organisms are! To get down the basics, the combination of novel biological concepts, a cool idea, and the community awareness that our project provides, makes the BioPad project perfect an ideal project for iGEM!


The BioPad's Applications

With respect to basic sciences, the BioPad demonstrates that protein complementation techniques are suitable for biosensors – especially for two-component regulatory systems. The introduction of the split IFP1.4 (infrared fluorescent protein) into the registry will allow future iGEM and research teams to take advantage of the reversibility and precision of this protein. Moreover, our work on the Cpx pathway will allow future iGEM teams to make novel uses of other members of this subfamily, as well as other two-component regulatory systems.

As for applied sciences, the BioPad could be used to deliver a cheap, fast, efficient, and accurate antibiotic screening system allowing researchers to easily quantify the effects of antibiotics on gram-negative bacteria. The BioPad project could also be the source of an "antibiotic complement" drug increasing the efficiency of pre-existing antibiotics. Moreover, the Biopad could provide a new approach to studying genes by allowing researchers to examine the relationship between genes and their corresponding activating signals. Learn more about the applications of the project here.

- TALK ABOUT SPEED INCREASE - PUT IN LINKS FOR OTHER PAGES
touch bacteria

Split

Can't touch this

Microfluidics

Microfluidics

Our Biopad is implemented in a microfluidic chip. This tool allows all kinds of analytical experiments and is increasingly used in biological research. From fabrication to applications, find out more about this awesome device here!

Yeast

Discover how we took advantage of the HOG osmotic response pathway to create touch sensitive yeast strains! Learn more on how we implemented a split GFP and a split Luciferase in S.Cerevisiae leading to light emission when pressure is applied.

I.T

I like turtles.

Human practice

Human practice

Are we human, or are we dancers ?

Safety

work in progress

MEET OUR TEAM

We are a group of 14 students from the faculties of Life, Biomechanical, and Computer Sciences, and are supervised by 2 EPFL professors, 1 Lecturer and 5 PhD students.

the team's students

Sponsors