Team:HokkaidoU Japan/Projects/H Stem

From 2014.igem.org

(Difference between revisions)
Line 42: Line 42:
\begin{cases}
\begin{cases}
-
   \dot{X}=a_X-k_{bind}XY+k_{bind}Z-b_XX & \\
+
   \dot{x}=a-bx-k_{bind}xy+k_{unbind}z & \\
-
   \dot{Y}=a_Y-k_{bind}XY+k_{bind}Z-b_YY & \\
+
   \dot{y}=1-y-k_{bind}xy+k_{unbind}z & \\
-
   \dot{Z}=k_{bind}XY-k_{bind}Z-b_ZZ &
+
   \dot{z}=k_{bind}xy-k_{unbind}z-cz &
  \end{cases}
  \end{cases}
     </div>
     </div>

Revision as of 08:51, 13 October 2014

Over View

How To Use

Modelling

Detail
\[ \zeta(s) = \sum_{n=1}^\infty\frac{1}{n^s} \] \[ \sigma_1 = \left( \matrix{ 0 & 1 \cr 1 & 0 } \right), \sigma_2 = \left( \matrix{ 0 & -i \cr i & 0 } \right), \sigma_3 = \left( \matrix{ 1 & 0 \cr 0 & -1} \right) は,以下の式を満たす. \left[ \frac{\sigma_i}{2}~,~\frac{\sigma_j}{2} \right] = i\varepsilon_{ijk} \frac{\sigma_k}{2} \] \[ \] \begin{cases} \dot{x}=a-bx-k_{bind}xy+k_{unbind}z & \\ \dot{y}=1-y-k_{bind}xy+k_{unbind}z & \\ \dot{z}=k_{bind}xy-k_{unbind}z-cz & \end{cases}