Team:Toulouse/Project/Spreading

From 2014.igem.org

(Difference between revisions)
Line 15: Line 15:
  <style type="text/css">
  <style type="text/css">
-
   .title1{color:#20a8da; font-family:'Open Sans'; font-weight:600; font-size:24px;  margin:0 0 33px 0; border:none;}
+
   .title1{color:#20a8da; font-family:'Open Sans'; font-weight:600; font-size:24px;  margin:0 0 33px 0; border:none; text-align: justify;}
   .title2{color:#5a6060; font-family:'Open Sans'; font-weight:600; font-size:18px; margin:0 0 30px 0; border:none;}
   .title2{color:#5a6060; font-family:'Open Sans'; font-weight:600; font-size:18px; margin:0 0 30px 0; border:none;}
Line 94: Line 94:
</div>
</div>
-
<p class="titre2">Auxotrophy</p>
+
<p class="title2">Auxotrophy</p>
<p class="texte">
<p class="texte">
To make the bacterium dependant on the tree and to avoid its spreading in the environment, it should be preferable to use a strain of <i>B.subtilis</i> which is auxotroph to a particular amino acid. The bacterium should be unable to synthesize one essential amino acid, and should find it in its environment. The Glutamine could be a good example since it is wide-spread in the phloem sap. It is the amino acid which is present in highest concentration in the phloem sap. If our bacterium is unable to synthesize the Glutamine, it will be obliged to take it in its close environment, that is to say the phloem sap.  
To make the bacterium dependant on the tree and to avoid its spreading in the environment, it should be preferable to use a strain of <i>B.subtilis</i> which is auxotroph to a particular amino acid. The bacterium should be unable to synthesize one essential amino acid, and should find it in its environment. The Glutamine could be a good example since it is wide-spread in the phloem sap. It is the amino acid which is present in highest concentration in the phloem sap. If our bacterium is unable to synthesize the Glutamine, it will be obliged to take it in its close environment, that is to say the phloem sap.  
Line 101: Line 101:
</p>
</p>
-
<p class="titre2">Non-sporing</p>
+
<p class="title2">Non-sporing</p>
<p class="texte">
<p class="texte">
In order to limit the spreading of our bacterium, we decided to limit its lifespan to only one season. The bacteria should be injected in spring, grow during the summer and finally should be inactivated in fall.<br\>  
In order to limit the spreading of our bacterium, we decided to limit its lifespan to only one season. The bacteria should be injected in spring, grow during the summer and finally should be inactivated in fall.<br\>  
Line 109: Line 109:
</p>
</p>
-
<p class="titre2">Toxin-antitoxin system</p>
+
<p class="title2">Toxin-antitoxin system</p>
<p class="texte">
<p class="texte">
The goal of this module is to prevent horizontal transfer between bacteria. Indeed, it is necessary to avoid any exchange of genetic material between wild type organisms and optimized organisms : it could be dangerous because of mutations, and considering ethics, it seems to be essential to avoid the spreading of synthetic genes.<br/>
The goal of this module is to prevent horizontal transfer between bacteria. Indeed, it is necessary to avoid any exchange of genetic material between wild type organisms and optimized organisms : it could be dangerous because of mutations, and considering ethics, it seems to be essential to avoid the spreading of synthetic genes.<br/>
Line 117: Line 117:
</p>
</p>
-
<p class="titre2">Integrative plasmid?</p>
+
<p class="title2">Integrative plasmid?</p>
<p class="texte">
<p class="texte">
All our constructions should be carried by integrative plasmids (pS.., pS.., pS..). Consequently, our different genetic modules would be integrated in the bacterium genome. The integration in the genome is more stable as the constructions are less likely to be transferred to other microorganisms. In addition to that, the expression of our genetic modules would not be dependant on a selective pressure based on an antibiotic resistance (as we can not inject antibiotics in the tree), allowing a high level of transcription in planta.  
All our constructions should be carried by integrative plasmids (pS.., pS.., pS..). Consequently, our different genetic modules would be integrated in the bacterium genome. The integration in the genome is more stable as the constructions are less likely to be transferred to other microorganisms. In addition to that, the expression of our genetic modules would not be dependant on a selective pressure based on an antibiotic resistance (as we can not inject antibiotics in the tree), allowing a high level of transcription in planta.  

Revision as of 19:43, 8 October 2014