Team:HokkaidoU Japan/Project/Modeling

From 2014.igem.org

(Difference between revisions)
 
Line 20: Line 20:
\left[ \frac{\sigma_i}{2}~,~\frac{\sigma_j}{2} \right] = i\varepsilon_{ijk} \frac{\sigma_k}{2} \]
\left[ \frac{\sigma_i}{2}~,~\frac{\sigma_j}{2} \right] = i\varepsilon_{ijk} \frac{\sigma_k}{2} \]
 +
\[  \]
 +
 +
\begin{cases}
 +
  \dot{X}=a_X-k_{bind}XY+k_{bind}Z-b_XX & \\
 +
  \dot{Y}=a_Y-k_{bind}XY+k_{bind}Z-b_YY & \\
 +
  \dot{Z}=k_{bind}XY-k_{bind}Z-b_ZZ &
 +
\end{cases}
</html>
</html>

Latest revision as of 03:51, 27 September 2014

\[ \zeta(s) = \sum_{n=1}^\infty\frac{1}{n^s} \] \[ \sigma_1 = \left( \matrix{ 0 & 1 \cr 1 & 0 } \right), \sigma_2 = \left( \matrix{ 0 & -i \cr i & 0 } \right), \sigma_3 = \left( \matrix{ 1 & 0 \cr 0 & -1} \right) は,以下の式を満たす. \left[ \frac{\sigma_i}{2}~,~\frac{\sigma_j}{2} \right] = i\varepsilon_{ijk} \frac{\sigma_k}{2} \] \[ \] \begin{cases} \dot{X}=a_X-k_{bind}XY+k_{bind}Z-b_XX & \\ \dot{Y}=a_Y-k_{bind}XY+k_{bind}Z-b_YY & \\ \dot{Z}=k_{bind}XY-k_{bind}Z-b_ZZ & \end{cases}