Team:HokkaidoU Japan/Project/Modeling
From 2014.igem.org
(Difference between revisions)
Line 7: | Line 7: | ||
\[ \zeta(s) = \sum_{n=1}^\infty\frac{1}{n^s} \] | \[ \zeta(s) = \sum_{n=1}^\infty\frac{1}{n^s} \] | ||
+ | |||
+ | \[ \sigma_1 = \left( | ||
+ | \matrix{ 0 & 1 \cr | ||
+ | 1 & 0 } \right), | ||
+ | \sigma_2 = \left( | ||
+ | \matrix{ 0 & -i \cr | ||
+ | i & 0 } \right), | ||
+ | \sigma_3 = \left( | ||
+ | \matrix{ 1 & 0 \cr | ||
+ | 0 & -1} \right) | ||
+ | は,以下の式を満たす. | ||
+ | \left[ \frac{\sigma_i}{2}~,~\frac{\sigma_j}{2} \right] = i\varepsilon_{ijk} \frac{\sigma_k}{2} \] | ||
</html> | </html> |
Revision as of 15:15, 26 September 2014
\[ \zeta(s) = \sum_{n=1}^\infty\frac{1}{n^s} \] \[ \sigma_1 = \left( \matrix{ 0 & 1 \cr 1 & 0 } \right), \sigma_2 = \left( \matrix{ 0 & -i \cr i & 0 } \right), \sigma_3 = \left( \matrix{ 1 & 0 \cr 0 & -1} \right) は,以下の式を満たす. \left[ \frac{\sigma_i}{2}~,~\frac{\sigma_j}{2} \right] = i\varepsilon_{ijk} \frac{\sigma_k}{2} \]