Team:HokkaidoU Japan/Project/Modeling

From 2014.igem.org

(Difference between revisions)
Line 7: Line 7:
\[ \zeta(s) = \sum_{n=1}^\infty\frac{1}{n^s} \]
\[ \zeta(s) = \sum_{n=1}^\infty\frac{1}{n^s} \]
 +
 +
\[ \sigma_1 = \left(
 +
                  \matrix{ 0 & 1  \cr
 +
                            1 & 0 } \right),
 +
    \sigma_2 = \left(
 +
                    \matrix{ 0 & -i \cr
 +
                            i & 0 } \right),
 +
    \sigma_3 = \left(
 +
                    \matrix{ 1 & 0  \cr
 +
                            0 & -1} \right)
 +
は,以下の式を満たす.
 +
\left[ \frac{\sigma_i}{2}~,~\frac{\sigma_j}{2} \right] = i\varepsilon_{ijk} \frac{\sigma_k}{2} \]
</html>
</html>

Revision as of 15:15, 26 September 2014

\[ \zeta(s) = \sum_{n=1}^\infty\frac{1}{n^s} \] \[ \sigma_1 = \left( \matrix{ 0 & 1 \cr 1 & 0 } \right), \sigma_2 = \left( \matrix{ 0 & -i \cr i & 0 } \right), \sigma_3 = \left( \matrix{ 1 & 0 \cr 0 & -1} \right) は,以下の式を満たす. \left[ \frac{\sigma_i}{2}~,~\frac{\sigma_j}{2} \right] = i\varepsilon_{ijk} \frac{\sigma_k}{2} \]