Team:Imperial

From 2014.igem.org

(Difference between revisions)
Line 6: Line 6:
             <div class="banner">
             <div class="banner">
                 <ul class="bxslider">
                 <ul class="bxslider">
-
                   
 
                     <li>
                     <li>
-
                         <img src="https://static.igem.org/mediawiki/2014/a/ad/IC14-banner-2.jpg" />
+
                         <img src="/images/IC14-banner-3.jpg" />
                     </li>
                     </li>
                     <li>
                     <li>
-
                         <img src="https://static.igem.org/mediawiki/2014/d/df/IC14-banner-1.jpg" />
+
                         <img src="/images/IC14-banner-1.jpg" />
                     </li>
                     </li>
-
                      
+
                     <li>
 +
                        <img src="/images/IC14-banner-2.jpg" />
 +
                    </li>
                 </ul>
                 </ul>
                 <div class="banner-overlay">
                 <div class="banner-overlay">
                     <div class="centre-box">
                     <div class="centre-box">
-
                         <h1>Imperial College</h1>
+
                         <h1>Imperial College </h1>
-
                         <h2>London iGEM</h2>
+
                         <h2>iGEM 2014</h2>
                     </div>
                     </div>
                 </div>
                 </div>

Revision as of 09:46, 9 September 2014

Imperial iGEM 2014

The Project

Cellulose is the most abundant organic polymer found in nature. Plants, bacteria and even some animals utilise it for applications such as support, adhesion and flotation. We find cellulose in our everyday lives; from being the main constituent of cotton to uses in medicine and scientific research.

Much of the cellulose we use is derived from plants as a mixture with other compounds and so requires an energy intensive purification step Bacteria offer an alternative means of production that produces a cellulose that is purer and requires less processing.

In our project we optimise the production of bacterial cellulose by engineering Gluconacetobacter xylinus and transferring the system into E. coli. We also functionalise our cellulose in order to expand its mechanical, chemical and biological properties into new areas of use.

The Team

Meet Our Members

Lorem Ipsum

Blah blah blah

Latest Tweet