From 2014.igem.org
(Difference between revisions)
|
|
(2 intermediate revisions not shown) |
Line 1: |
Line 1: |
- | __NOTOC__
| |
- | {{:Team:Oxford/templates/header}}
| |
- | <div class="abcdefg">
| |
- | <div class="container cf row">
| |
| | | |
- |
| |
- |
| |
- |
| |
- | <html>
| |
- |
| |
- | <div class="inner">
| |
- | <img class="DCMationgif" src="https://static.igem.org/mediawiki/2014/8/81/DCMation1.png" height="400px" align="middle" alt="" onclick='javascript:(this.src=="https://static.igem.org/mediawiki/2014/8/81/DCMation1.png"?this.src="https://static.igem.org/mediawiki/2014/4/4f/DCMationlogo.gif":"")' />
| |
- | </div>
| |
- |
| |
- |
| |
- | <p>
| |
- |
| |
- |
| |
- | Chlorinated solvents are indispensable to industry, research and household applications. Their accumulation in water supplies and carcinogenic properties present a major environmental and health hazard. <br><br>OxiGEM are tackling the issue by developing a bioremediation/detection kit to dispose of the common chlorinated solvent dichloromethane (DCM). Our system design, inspired by the DCM-degradation pathway of M. extorquens DM4, is initiated and refined by the dialogue between modeling simulations and experimental data. Incorporation of novel diffusion-limiting biopolymeric beads to encapsulate engineered bacteria ensures safe and efficient DCM degradation. <br><br>We are constructing a synthetic fluorescent biosensor through GFP fusion to the dcmA promoter, regulated by the DCM-binding protein, DcmR, and maximising the sensitivity and catalytic efficiency of the system through directed evolution.<br><br> Our DCM clean-up solution, branded ‘DCMation’, will be user-friendly in a wide range of workplaces and extendable to the disposal of many other harmful substrates.
| |
- | <br><br><br>
| |
- |
| |
- |
| |
- | </html>
| |
- |
| |
- |
| |
- |
| |
- |
| |
- |
| |
- |
| |
- | {{:Team:Oxford/templates/footer}}
| |
Latest revision as of 01:07, 18 October 2014