Team:ITESM-CEM/Project

From 2014.igem.org

(Difference between revisions)
 
(26 intermediate revisions not shown)
Line 1: Line 1:
-
<!-- *** What falls between these lines is the Alert Box!  You can remove it from your pages once you have read and understood the alert *** -->
 
-
 
-
 
{{CSS/Main}}
{{CSS/Main}}
-
 
+
{{Team:ITESM-CEM/CSS}}
<html>
<html>
-
<!--main content -->
+
<head>
-
<table width="70%" align="center">
+
<link href='http://fonts.googleapis.com/css?family=Exo:300,400,600' rel='stylesheet' type='text/css'>
 +
<link href='http://fonts.googleapis.com/css?family=Open+Sans:400italic,700italic,400,700' rel='stylesheet' type='text/css'>
 +
<title>TEC-CEM | Project</title>
 +
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 +
<style type="text/css">
 +
body {
 +
background-color: #6385bf;
 +
}
 +
</style>
-
<!--welcome box -->
+
</head>
-
<tr>
+
<body leftmargin="0" topmargin="0" marginwidth="0" marginheight="0">
-
<td style="border:1px solid black;" colspan="3" align="center" height="150px" bgColor=#FF404B>
+
 
-
<h1 >WELCOME TO iGEM 2014! </h1>
+
-
<p>Your team has been approved and you are ready to start the iGEM season!
+
-
<br>On this page you can document your project, introduce your team members, document your progress <br> and share your iGEM experience with the rest of the world! </p>
+
-
<br>
+
-
<p style="color:#E7E7E7"> <a href="https://2014.igem.org/wiki/index.php?title=Team:ITESM-CEM/Project&action=edit"style="color:#FFFFFF"> Click here  to edit this page!</a> </p>
+
-
</td>
+
-
</tr>
+
-
<tr> <td colspan="3" height="5px"> </td></tr>
+
<table border="0" align="center" cellpadding="0" cellspacing="0" id="Table_01" style="background:transparent;">
-
<!-- end welcome box -->
+
  <tr>
-
<tr>  
+
    <td colspan="3" valign="bottom"><h3>ITESM-CEM | Enzy7-K me</h3></td>
 +
    <td colspan="2" rowspan="2" align="right">
-
<!--navigation menu -->
+
<div class="header">
-
<td align="center" colspan="3">
+
      <iframe src="https://2014.igem.org/Team:ITESM-CEM/HEADER" width="235" height="77" frameborder="0" scrolling="no" seamless></iframe>
 +
      </div>
-
<table  width="100%">
+
</td>
-
<tr heigth="15px"></tr>
+
    <td><img src="images/spacer.gif" width="1" height="43" alt=""></td>
-
<tr heigth="75px">  
+
  </tr>
 +
  <tr>
 +
    <td colspan="3" rowspan="2"><h1>Project
 +
        <h1n> 3014</h1n></h1></td>
 +
    <td><img src="images/spacer.gif" width="1" height="34" alt=""></td>
 +
  </tr>
 +
  <tr>
 +
    <td rowspan="4">&nbsp;</td>
 +
    <td rowspan="4" align="right" valign="top">
 +
<div class="headerSocial">
 +
    <iframe src="https://2014.igem.org/Team:ITESM-CEM/SOCIAL" width="165" height="34" frameborder="0" scrolling="no" seamless></iframe>     
 +
      </div>
 +
   
 +
    <td><img src="images/spacer.gif" width="1" height="6" alt=""></td>
 +
  </tr>
 +
  <tr>
 +
    <td colspan="3" rowspan="3" align="left" valign="top"><ul>
 +
      <sub><a href="https://2014.igem.org/Team:ITESM-CEM/Project" style="color: #FFF;">Description</a></sub>
 +
      <sub><a href="https://2014.igem.org/Team:ITESM-CEM/Project/Details">Details</a></sub>
 +
      <sub><a href="https://2014.igem.org/Team:ITESM-CEM/Project/Materials">Materials & Methods</a></sub>
 +
      <sub><a href="https://2014.igem.org/Team:ITESM-CEM/Project/Experiments">Experiments</a></sub>
 +
      <sub><a href="https://2014.igem.org/Team:ITESM-CEM/Project/Data">Results & Discussion</a></sub>
 +
      <sub><a href="https://2014.igem.org/Team:ITESM-CEM/Project/HP">Human Practices</a></sub>
 +
      <sub><a href="https://2014.igem.org/Team:ITESM-CEM/Project/Conclusions">Conclusions</a></sub>
-
<td style="border:1px solid black;" align="center" height ="45px" onMouseOver="this.bgColor='#d3d3d3'" onMouseOut="this.bgColor='#e7e7e7'" bgColor=#e7e7e7> 
 
-
<a href="https://2014.igem.org/Team:ITESM-CEM"style="color:#000000">Home </a> </td>
 
-
<td style="border:1px solid black;" align="center" height ="45px" onMouseOver="this.bgColor='#d3d3d3'" onMouseOut="this.bgColor='#e7e7e7'" bgColor=#e7e7e7>  
+
    </ul></td>
-
<a href="https://2014.igem.org/Team:ITESM-CEM/Team"style="color:#000000"> Team </a> </td>
+
    <td><img src="images/spacer.gif" width="1" height="1" alt=""></td>
 +
  </tr>
 +
  <tr>
 +
    <td><img src="images/spacer.gif" width="1" height="3" alt=""></td>
 +
  </tr>
 +
  <tr>
 +
    <td><img src="images/spacer.gif" width="1" height="28" alt=""></td>
 +
  </tr>
 +
  <tr>
 +
    <td colspan="5" valign="top">
-
<td style="border:1px solid black;" align="center" height ="45px" onMouseOver="this.bgColor='#d3d3d3'" onMouseOut="this.bgColor='#e7e7e7'" bgColor=#e7e7e7>  
+
<table width="100%" border="0" id="ContenidoSecciones">
-
<a href="https://igem.org/Team.cgi?year=2014&team_name=ITESM-CEM"style="color:#000000"> Official Team Profile </a></td>
+
<div style="background-color: #f3f3e2; style="width:95%">
 +
<br>
-
<td style="border:1px solid black" align="center"  height ="45px" onMouseOver="this.bgColor='#d3d3d3'" onMouseOut="this.bgColor='#e7e7e7'" bgColor=#e7e7e7> 
+
<!--INICIO CONTENIDO-->
-
<a href="https://2014.igem.org/Team:ITESM-CEM/Project"style="color:#000000"> Project</a></td>
+
-
<td style="border:1px solid black;" align="center"  height ="45px" onMouseOver="this.bgColor='#d3d3d3'" onMouseOut="this.bgColor='#e7e7e7'" bgColor=#e7e7e7>  
+
<h2>Overview</h2>
-
<a href="https://2014.igem.org/Team:ITESM-CEM/Parts"style="color:#000000"> Parts</a></td>
+
-
<td style="border:1px solid black;" align="center" height ="45px" onMouseOver="this.bgColor='#d3d3d3'" onMouseOut="this.bgColor='#e7e7e7'" bgColor=#e7e7e7>
+
<img src="https://static.igem.org/mediawiki/2014/5/52/10726723_10152823003736565_453836291_n.jpg" align="left" width="250" height="250" hspace="10" BORDER=10>
-
<a href="https://2014.igem.org/Team:ITESM-CEM/Modeling"style="color:#000000"> Modeling</a></td>
+
-
<td style="border:1px solid black;" align="center" height ="45px" onMouseOver="this.bgColor='#d3d3d3'" onMouseOut="this.bgColor='#e7e7e7'" bgColor=#e7e7e7>
+
<p style="text-align: justify; text-justify: inter-word;"> Cardiovascular disease has been identified as one of the leading causes of death worldwide, and particularly in North America. Cardiovascular disease is strongly associated with atherosclerotic plaque: the accumulation of oxidized lipids and foam cells over the inner layer of arteries; atherosclerotic plaque does not only affect the behaviour of factors as blood pressure, but is also a major cause of strokes and cardiovascular events. <br><br>
-
<a href="https://2014.igem.org/Team:ITESM-CEM/Notebook"style="color:#000000"> Notebook</a></td>
+
Formerly, atherosclerosis was strongly associated with the daily intake of cholesterol in products derived from an animal source; however, it has recently been shown that it is not cholesterol itself, but its oxidized derivatives which cause the development of atherosclerotic plaque. When cholesterol travels through the bloodstream, in the form of lipoproteins, it is susceptible to a variety of chemical reactions, among which oxidation caused by reactive oxygen species (ROS) is quite common. When cholesterol is oxidized, it can no longer undergo a normal metabolic control: it starts accumulating and the cells responsible for its degradation, the macrophages, are unable to metabolize it. This is the ultimate cause of Atherosclerosis. <br><br>
-
<td style="border:1px solid black;" align="center"  height ="45px" onMouseOver="this.bgColor='#d3d3d3'" onMouseOut="this.bgColor='#e7e7e7'" bgColor=#e7e7e7>
 
-
<a href="https://2014.igem.org/Team:ITESM-CEM/Safety"style=" color:#000000"> Safety </a></td>
 
-
 
-
<td style="border:1px solid black;" align="center"  height ="45px" onMouseOver="this.bgColor='#d3d3d3'" onMouseOut="this.bgColor='#e7e7e7'" bgColor=#e7e7e7>
 
-
<a href="https://2014.igem.org/Team:ITESM-CEM/Attributions"style="color:#000000"> Attributions </a></td>
 
-
 
-
 
-
<td align ="center"> <a href="https://2014.igem.org/Main_Page"> <img src="https://static.igem.org/mediawiki/igem.org/6/60/Igemlogo_300px.png" width="55px"></a> </td>
 
-
</tr>
 
-
</table>
 
-
 
-
</tr>
 
-
</tr>
 
-
</td>
 
-
 
-
<tr> <td colspan="3"  height="15px"> </td></tr>
 
-
<tr><td bgColor="#e7e7e7" colspan="3" height="1px"> </tr>
 
-
<tr> <td colspan="3"  height="5px"> </td></tr>
 
-
 
-
 
-
 
-
<!--Project content  -->
 
-
<tr><td > <h3> Project Description </h3></td>
 
-
<td ></td >
 
-
<td > <h3> Content</h3></td>
 
-
</tr>
 
-
 
-
<tr>
 
-
<td width="45%"  valign="top">
 
-
<p> Cardiovascular disease has been identified as one of the leading causes of death worldwide, and particularly in North America. Cardiovascular disease is strongly associated with atherosclerotic plaque: the accumulation of oxidized lipids and foam cells over the inner layer of arteries; atherosclerotic plaque does not only affect the behaviour of factors as blood pressure, but is also a major cause of strokes and cardiovascular events. <br><br>
 
-
Formerly, atherosclerosis was strongly associated with the daily intake of cholesterol in products derived from an animal source; however, it has recently been shown that it is not cholesterol itself, but its oxidized derivatives which cause the development of atherosclerotic plaque. When cholesterol travels through the bloodstream, in the form of lipoproteins, it is susceptible to a variety of chemical reactions, among which oxidation caused by reactive oxygen species (ROS) is quite common. When cholesterol is oxidized, it can no longer undergo a normal metabolic control: it starts accumulating and the cells responsible for its degradation, the macrophages, are unable to metabolize it. This is the ultimate cause of Atherosclerosis. <br><br>
 
A variety of oxidized cholesterol species exists, it is the purpose of this project to enhance the macrophage-mediated degradation of a particular molecule, namely 7-ketocholesterol. In order to perform this task, the genes encoding three microbial enzymes will be transformed into human macrophages. The enzymes were firstly isolated from two genres of bacteria which inhabit the soil, where they are exposed to death animal rests; this kind of organisms are then naturally able to metabolize the compounds accumulated in the bodies, as oxidized cholesterol. First, we are testing the functionality of the three recombinant enzymes in E. coli and the degradation rates showed on 7-ketocholesterol, after that we will be able to transform mammalian cells. <br><br>
A variety of oxidized cholesterol species exists, it is the purpose of this project to enhance the macrophage-mediated degradation of a particular molecule, namely 7-ketocholesterol. In order to perform this task, the genes encoding three microbial enzymes will be transformed into human macrophages. The enzymes were firstly isolated from two genres of bacteria which inhabit the soil, where they are exposed to death animal rests; this kind of organisms are then naturally able to metabolize the compounds accumulated in the bodies, as oxidized cholesterol. First, we are testing the functionality of the three recombinant enzymes in E. coli and the degradation rates showed on 7-ketocholesterol, after that we will be able to transform mammalian cells. <br><br>
By using this approach, it is expected that the ability of macrophages to degrade 7-ketocholesterol will be increased at a genomic and metabolic level. Once suitable results are obtained, a new approach will be taken so that a therapy can be developed.
By using this approach, it is expected that the ability of macrophages to degrade 7-ketocholesterol will be increased at a genomic and metabolic level. Once suitable results are obtained, a new approach will be taken so that a therapy can be developed.
</p>
</p>
<br>
<br>
-
<h3>References </h3>
+
<h2>Our Project</h2>
 +
<p style="text-align: justify; text-justify: inter-word;">Our project is to design and develop a preventive gene therapy for atherosclerosis, based on the usage of microbial enzymes.
 +
This is based on the fact that the human body is incapable to degrade or break down many substances that affect our health, these substances start to accumulate slowly and ultimately reduce our life span. How does it relate to atherosclerosis? 
 +
The treatment would consist on the degradation of oxidized cholesterol. Three enzymes originally from Chromobacterium sp.6 and Rhodococcus jostii4, are capable of degrading the molecule of 7-ketocholesterol.5 The DNA enconding those three enzymes, will then be transfected into mammalian cells and localized within the lysozome, to ensure their degrading function.
 +
This project will potentially be the basis of the development of novel treatments for atherosclerosis, as well as the enzymatic tratment of food in order to remove trace amounts of 7-ketocholesterol they might contain.</p>
 +
<h2>References</h2>
<p>
<p>
1. Benoit C, Drouot S, Barrail-Tran A, Taburet AM. Drug-drug interactions between HMG-CoA reductase inhibitors (statins) and antiviral protease inhibitors. Clin Pharmacokinet. 2013 May 24; 52: 815-831. <br><br>
1. Benoit C, Drouot S, Barrail-Tran A, Taburet AM. Drug-drug interactions between HMG-CoA reductase inhibitors (statins) and antiviral protease inhibitors. Clin Pharmacokinet. 2013 May 24; 52: 815-831. <br><br>
Line 99: Line 101:
6. Mathieu JM. Strategies for the mitigation of oxysterol-induced cytotoxicity. Texas: Rice University; 2011. <br>
6. Mathieu JM. Strategies for the mitigation of oxysterol-induced cytotoxicity. Texas: Rice University; 2011. <br>
7. Pérez Guerra Y. Oxidación de las LDL (lipoproteínas de baja densidad) y su relación con la patogénesis de la aterosclerosis. Revista CENIC de ciencias biológicas. 2007; 38(1): 3-11. <br><br>
7. Pérez Guerra Y. Oxidación de las LDL (lipoproteínas de baja densidad) y su relación con la patogénesis de la aterosclerosis. Revista CENIC de ciencias biológicas. 2007; 38(1): 3-11. <br><br>
-
8. Tubbs RS, Blouir MC, Romeo AK, Mortazavi MM, Choen-Gadol AA. Spinal cord ischemia and atherosclerosis: a review of literature. Br J Neurosurg. 2011 Dec 25; 25(6): 666-670.
+
8. Tubbs RS, Blouir MC, Romeo AK, Mortazavi MM, Choen-Gadol AA. Spinal cord ischemia and atherosclerosis: a review of literature. Br J Neurosurg. 2011 Dec 25; 25(6): 666-670.</p>
-
</p>  
+
<h4>Image Sources</h4>
-
</td>
+
<p>
 +
1.  Heart attack- http://www.pasadenahealthcenter.com/site/wp-content/uploads/2013/02/bigstock-Heart-Attack-4863606.jpg.<br><br>
 +
2.  Atheroma- http://www.brown.edu/Courses/Digital_Path/systemic_path/cardio/51.jpg.<br><br>
 +
3.  LDL- http://www.jlr.org/content/42/4/605/F10.medium.gif.<br><br>
 +
4.  Cholesterol Meds Cartoon- http://www.physiciansweekly.com/wp-content/uploads/2013/06/CholesterolMeds-cartoon.png<br><br>
-
<td></td>
+
  </p>
-
<td width="45%"  valign="top">
+
-
<p> You can use these subtopics to further explain your project</p>
+
-
<ol>
 
-
<li>Overall project summary</li>
 
-
<li>Project Details</li>
 
-
<li>Materials and Methods</li>
 
-
<li>The Experiments</li>
 
-
<li>Results</li>
 
-
<li>Data analysis</li>
 
-
<li>Conclusions</li>
 
-
</ol>
 
-
<p>
 
-
It's important for teams to describe all the creativity that goes into an iGEM project, along with all the great ideas your team will come up with over the course of your work.
 
-
</p>
 
-
<p>
 
-
It's also important to clearly describe your achievements so that judges will know what you tried to do and where you succeeded. Please write your project page such that what you achieved is easy to distinguish from what you attempted.
 
-
</p>
 
-
</td>
+
<br><br>
 +
<!--FIN CONTENIDO-->
-
</tr>
+
</div>
 +
</table>
 +
      <p>&nbsp;</p></td>
 +
    <td><img src="images/spacer.gif" width="1" height="509" alt=""></td>
 +
  </tr>
 +
  <tr>
 +
    <td><img src="images/spacer.gif" width="240" height="1" alt=""></td>
 +
    <td><img src="images/spacer.gif" width="544" height="1" alt=""></td>
 +
    <td><img src="images/spacer.gif" width="133" height="1" alt=""></td>
 +
    <td><img src="images/spacer.gif" width="70" height="1" alt=""></td>
 +
    <td><img src="images/spacer.gif" width="165" height="1" alt=""></td>
 +
    <td></td>
 +
  </tr>
 +
</table>
 +
 
 +
 
 +
  <table width="100%" border="0" align="center" cellpadding="0" cellspacing="0" id="Table_" dwcopytype="CopyTableRow">
 +
    <tr>
 +
      <td colspan="5" align="left" valign="bottom">
 +
      <div class="footer">
 +
      <iframe src="https://2014.igem.org/Team:ITESM-CEM/FOOTER" width="500" height="82" frameborder="0" scrolling="no" seamless></iframe></div>
 +
      </td>
 +
      <td width="37%" align="right" valign="bottom">
 +
     
 +
      <div class="PLASMENU">
 +
      <iframe src="https://2014.igem.org/Team:ITESM-CEM/POPMENU" width="614" height="614" frameborder="0" scrolling="no" seamless></iframe>
 +
      </div>
 +
     
 +
      </td>
 +
    </tr>
 +
  </table>
 +
 
 +
</body>
-
</table>
 
</html>
</html>

Latest revision as of 23:43, 17 October 2014

TEC-CEM | Project

ITESM-CEM | Enzy7-K me

Project 3014

 

Overview

Cardiovascular disease has been identified as one of the leading causes of death worldwide, and particularly in North America. Cardiovascular disease is strongly associated with atherosclerotic plaque: the accumulation of oxidized lipids and foam cells over the inner layer of arteries; atherosclerotic plaque does not only affect the behaviour of factors as blood pressure, but is also a major cause of strokes and cardiovascular events.

Formerly, atherosclerosis was strongly associated with the daily intake of cholesterol in products derived from an animal source; however, it has recently been shown that it is not cholesterol itself, but its oxidized derivatives which cause the development of atherosclerotic plaque. When cholesterol travels through the bloodstream, in the form of lipoproteins, it is susceptible to a variety of chemical reactions, among which oxidation caused by reactive oxygen species (ROS) is quite common. When cholesterol is oxidized, it can no longer undergo a normal metabolic control: it starts accumulating and the cells responsible for its degradation, the macrophages, are unable to metabolize it. This is the ultimate cause of Atherosclerosis.

A variety of oxidized cholesterol species exists, it is the purpose of this project to enhance the macrophage-mediated degradation of a particular molecule, namely 7-ketocholesterol. In order to perform this task, the genes encoding three microbial enzymes will be transformed into human macrophages. The enzymes were firstly isolated from two genres of bacteria which inhabit the soil, where they are exposed to death animal rests; this kind of organisms are then naturally able to metabolize the compounds accumulated in the bodies, as oxidized cholesterol. First, we are testing the functionality of the three recombinant enzymes in E. coli and the degradation rates showed on 7-ketocholesterol, after that we will be able to transform mammalian cells.

By using this approach, it is expected that the ability of macrophages to degrade 7-ketocholesterol will be increased at a genomic and metabolic level. Once suitable results are obtained, a new approach will be taken so that a therapy can be developed.


Our Project

Our project is to design and develop a preventive gene therapy for atherosclerosis, based on the usage of microbial enzymes. This is based on the fact that the human body is incapable to degrade or break down many substances that affect our health, these substances start to accumulate slowly and ultimately reduce our life span. How does it relate to atherosclerosis? The treatment would consist on the degradation of oxidized cholesterol. Three enzymes originally from Chromobacterium sp.6 and Rhodococcus jostii4, are capable of degrading the molecule of 7-ketocholesterol.5 The DNA enconding those three enzymes, will then be transfected into mammalian cells and localized within the lysozome, to ensure their degrading function. This project will potentially be the basis of the development of novel treatments for atherosclerosis, as well as the enzymatic tratment of food in order to remove trace amounts of 7-ketocholesterol they might contain.

References

1. Benoit C, Drouot S, Barrail-Tran A, Taburet AM. Drug-drug interactions between HMG-CoA reductase inhibitors (statins) and antiviral protease inhibitors. Clin Pharmacokinet. 2013 May 24; 52: 815-831.

2. Biasucci LM, Biasillo G, Stefanelli A. Inflammatory markers, cholestreol and sta
tins: pathophysiological role and clinical importance. Cliln Chem Lab Med. 2010 Sep 27; 48(12): 1685-1691.
3. Lyons MA, Brown AJ. Molecules in focus: 7-ketocholesterol. Int J Biochem Cell Biol. 1999; 31: 369-375.

4. Mathieu JM, Mohn WW, Eltis LD, LeBlanc JC, Stewart GR, Dresen C, et al. 7-Ketocholesterol catabolism by Rhodococcus jostti RHA1. Appl Environ Microbiol. 2009 Oct 26; 76(1): 352-355.

5. Mathieu JM, Schloendron J, Rittmann BE, Álvarez PJJ. Microbial degradation of 7-ketocholesterol. Biodegradation. 2008; 19: 807-813.

6. Mathieu JM. Strategies for the mitigation of oxysterol-induced cytotoxicity. Texas: Rice University; 2011.
7. Pérez Guerra Y. Oxidación de las LDL (lipoproteínas de baja densidad) y su relación con la patogénesis de la aterosclerosis. Revista CENIC de ciencias biológicas. 2007; 38(1): 3-11.

8. Tubbs RS, Blouir MC, Romeo AK, Mortazavi MM, Choen-Gadol AA. Spinal cord ischemia and atherosclerosis: a review of literature. Br J Neurosurg. 2011 Dec 25; 25(6): 666-670.

Image Sources

1. Heart attack- http://www.pasadenahealthcenter.com/site/wp-content/uploads/2013/02/bigstock-Heart-Attack-4863606.jpg.

2. Atheroma- http://www.brown.edu/Courses/Digital_Path/systemic_path/cardio/51.jpg.

3. LDL- http://www.jlr.org/content/42/4/605/F10.medium.gif.

4. Cholesterol Meds Cartoon- http://www.physiciansweekly.com/wp-content/uploads/2013/06/CholesterolMeds-cartoon.png