Team:Vanderbilt/Home

From 2014.igem.org

(Difference between revisions)
(added home page)
 
Line 1: Line 1:
-
<!doctype html>
+
{{Team:Vanderbilt/CSS}}
 +
 
<html>
<html>
Line 5: Line 6:
     <meta charset="UTF-8">
     <meta charset="UTF-8">
     <title>Home</title>
     <title>Home</title>
-
    <link rel="stylesheet" type="text/css" href="Vanderbilt_iGEM_2014_CSS.css">
 
     <style>
     <style>
Line 17: Line 17:
             visibility: visible;
             visibility: visible;
         }
         }
-
 
         #home_tab_right {
         #home_tab_right {
             visibility: hidden;
             visibility: hidden;
Line 32: Line 31:
<div id="tabs">
<div id="tabs">
-
     <a href="home.html">            <div id="home_tab_left" class = "tab_left"></div>           </a>
+
     <div id="home_tab_left" class = "tab_left"><a href="Home"></a>                       </div>          
-
     <a href="team.html">            <div id="team_tab_left" class = "tab_left"></div>           </a>
+
     <div id="team_tab_left" class = "tab_left"><a href="Team"></a>                       </div>         
-
     <a href="project.html">        <div id="project_tab_left" class = "tab_left"></div>       </a>
+
     <div id="project_tab_left" class = "tab_left"><a href="Project"></a>                </div>
-
     <a href="parts.html">          <div id="parts_tab_left" class = "tab_left"></div>         </a>
+
     <div id="parts_tab_left" class = "tab_left"><a href="Parts"></a>                     </div>
-
    <a href="notebook.html">       <div id="notebook_tab_left" class = "tab_left"></div>       </a>
+
    <div id="notebook_tab_left" class = "tab_left"><a href="Notebook"></a>              </div>
-
     <a href="safety.html">          <div id="safety_tab_left" class = "tab_left"></div>         </a>
+
     <div id="safety_tab_left" class = "tab_left"><a href="Safety"></a>                   </div>
-
    <a href="attributions.html">   <div id="attributions_tab_left" class = "tab_left"></div>   </a>
+
    <div id="attributions_tab_left" class = "tab_left"><a href="Attributions"></a>      </div>
     <a href="https://2014.igem.org/Main_Page">
     <a href="https://2014.igem.org/Main_Page">
-
         <img id="igem_logo" src="Igemlogo_300px.png" alt="igem logo" width="50" height="50">
+
         <img id="igem_logo" src="https://static.igem.org/mediawiki/parts/6/6b/Vanderbilt_iGEM.png" alt="igem logo" width="50" height="50">
     </a>
     </a>
-
     <a href="home.html">            <div id="home_tab_right" class = "tab_right"></div>         </a>
+
     <div id="home_tab_right" class = "tab_right"><a href="Home">                    </div></a>
-
     <a href="team.html">            <div id="team_tab_right" class = "tab_right"></div>         </a>
+
     <div id="team_tab_right" class = "tab_right"><a href="Team">                    </div></a>
-
     <a href="project.html">        <div id="project_tab_right" class = "tab_right"></div>     </a>
+
     <div id="project_tab_right" class = "tab_right"><a href="Project">              </div></a>
-
     <a href="parts.html">          <div id="parts_tab_right" class = "tab_right"></div>       </a>
+
     <div id="parts_tab_right" class = "tab_right"><a href="Parts">                  </div></a>
-
     <a href="notebook.html">        <div id="notebook_tab_right" class = "tab_right"></div>     </a>
+
     <div id="notebook_tab_right" class = "tab_right"><a href="Notebook">            </div></a>
-
     <a href="safety.html">          <div id="safety_tab_right" class = "tab_right"></div>       </a>
+
     <div id="safety_tab_right" class = "tab_right"><a href="Safety">                </div></a>
-
     <a href="attributions.html">    <div id="attributions_tab_right" class = "tab_right"></div> </a>
+
     <div id="attributions_tab_right" class = "tab_right"><a href="Attributions">    </div></a>
</div>
</div>
Line 58: Line 57:
         <p>Long before the advent of modern science, it was recognized that certain plants are
         <p>Long before the advent of modern science, it was recognized that certain plants are
             capable of producing compounds of immense value.</p>
             capable of producing compounds of immense value.</p>
-
         <img id="vial" class="var_page_img" src="Oils_vial_design.jpg" alt="Oils in a vial" width="297" height="244" >
+
         <img id="vial" class="var_page_img" src="https://static.igem.org/mediawiki/parts/6/65/Oils_vial_design.jpg" alt="Oils in a vial" width="297" height="244">
         <p>From a single class of molecule, the terpenoids, come properties including agents with therapeutic
         <p>From a single class of molecule, the terpenoids, come properties including agents with therapeutic
             qualities against maladies ranging from cancer to infection, antimicrobials, natural pesticides,
             qualities against maladies ranging from cancer to infection, antimicrobials, natural pesticides,
Line 64: Line 63:
         <p>However, the utilization of these remarkable compounds has been severely hindered by their rarity
         <p>However, the utilization of these remarkable compounds has been severely hindered by their rarity
             in nature: many are found in only a small number of species and produced at levels measured in
             in nature: many are found in only a small number of species and produced at levels measured in
-
             parts per million2. Synthetic biology offers an opportunity to resolve this problem, by applying
+
             parts per million<sup>2</sup>. Synthetic biology offers an opportunity to resolve this problem, by applying
             metabolic engineering in order to create cellular factories. Our project seeks to use the ideas of
             metabolic engineering in order to create cellular factories. Our project seeks to use the ideas of
             synthetic biology to develop a commercially viable strategy for the efficient production of a wide
             synthetic biology to develop a commercially viable strategy for the efficient production of a wide

Latest revision as of 23:08, 26 January 2015

Home

Our Idea

Long before the advent of modern science, it was recognized that certain plants are capable of producing compounds of immense value.

Oils in a vial

From a single class of molecule, the terpenoids, come properties including agents with therapeutic qualities against maladies ranging from cancer to infection, antimicrobials, natural pesticides, rich flavorants, and fragrant scents.

However, the utilization of these remarkable compounds has been severely hindered by their rarity in nature: many are found in only a small number of species and produced at levels measured in parts per million2. Synthetic biology offers an opportunity to resolve this problem, by applying metabolic engineering in order to create cellular factories. Our project seeks to use the ideas of synthetic biology to develop a commercially viable strategy for the efficient production of a wide range of terpenoids.

1. Aharoni A, Jongsma MA, Bouwmeester HJ. Volatile science? Metabolic engineering of terpenoids in plants. Trends Plant Science 2005;10(12):594-602.
2. Ajikumar PK, Tyo K, Carlsen S, Mucha O, Phon TH, Stephanopoulos G. Terpenoids: opportunities forbiosynthesis of natural product drugs using engineered microorganisms. Molecular Pharmaceutics 2008;5(2):167-90.
Our Approach

We believe that common brewer's yeast, or Saccharomyces cerevisiae, is an excellent platform for engineering terpenoid biosynthetic pathways.

The mevalonic acid pathway endogenous to yeast produces the key isoprenoid intermediates that are the precursors to virtually all terpenoid biosynthesis3.

Genes encoding plant synthases can then be recombinantly expressed in yeast cells, which then take that isoprenoid substrate and convert it through one or more steps into the final terpenoid product.

A specially designed biobrick shuttle vector developed by our team should make the process convenient and reliable, by allowing us to first amplify plasmids containing our gene of interest in E. coli and permitting the integration of synthase genes directly into the yeast genome through homologous recombination.

A carefully-refined protocol is expected to further improve product yield, by extracting genetic sequences directly from plant genomic DNA and mating cells to form diploid transformants.

Combined, our approach promises to be an effective manufacturing platform for these precious (and sweet-smelling) compounds.

3. Farhi M, Marhevka E, Masci T, Marcos E, Eyal Y, Ovadis M, Abeliovich H, Vainstein A. Harnessing yeast subcellular compartments for the production of plant terpenoids. Metabolic Engineering 2011;13(5):474-81.