Team:Paris Bettencourt/Project/Odor Library

From 2014.igem.org

(Difference between revisions)
 
(9 intermediate revisions not shown)
Line 15: Line 15:
height : 300px;
height : 300px;
margin-top : 40px;
margin-top : 40px;
-
background-image : url("https://static.igem.org/mediawiki/2014/4/43/Something_fishy.png");
+
background-image : url("https://static.igem.org/mediawiki/2014/b/ba/Smell_of_roses.png");
        background-size : cover;
        background-size : cover;
background-color : transparent;
background-color : transparent;
Line 185: Line 185:
                 text-align : justify;
                 text-align : justify;
         }
         }
 +
table.tableizer-table {
 +
border: 1px solid #CCC; font-family: Arial, Helvetica, sans-serif
 +
font-size: 12px;
 +
}
 +
.tableizer-table td {
 +
padding: 4px;
 +
margin: 3px;
 +
border: 1px solid #ccc;
 +
}
 +
.tableizer-table th {
 +
background-color: #FA0063;
 +
color: #FFF;
 +
font-weight: bold;
 +
}
</style>
</style>
<body>
<body>
Line 225: Line 239:
Bacterial enzymes can produce volatile compounds, including many that are surprising and fun. A generation of iGEMers has had the chance to experience bacteria that smell like <a href="BBa_J45200">banana</a> or <a href="BBa_J45200">mint</a>. The goal of this project is to expand the range of odors that can be created with synthetic enzymes. An easy-to-use, standardized genetic odor library will empower a new generation to play with synthetic biological smells.  
Bacterial enzymes can produce volatile compounds, including many that are surprising and fun. A generation of iGEMers has had the chance to experience bacteria that smell like <a href="BBa_J45200">banana</a> or <a href="BBa_J45200">mint</a>. The goal of this project is to expand the range of odors that can be created with synthetic enzymes. An easy-to-use, standardized genetic odor library will empower a new generation to play with synthetic biological smells.  
-
</p>
+
</p></div>
<div id=part2 class=project>
<div id=part2 class=project>
-
<h6>Results</h6>
 
-
<br>
 
-
<p class=text1>
 
-
We created BioBricks coding for sequences of different enzymes to explore each of the odors described in the palette. These sequences are codon-optmized for produced expression in <i>E. coli</i> and produce the smells that compose the main odor categories perceived by humans. </p></div>
 
-
 
<p class=text2>
<p class=text2>
Line 237: Line 246:
<b>Figure 2. Basic structure of the odor cassettes: iGEM prefix, <a href="http://parts.igem.org/Part:BBa_J23108">constitutive promoter</a>, synthetic ribosome-binding site, coding sequence with his tag, and iGEM suffix </b> </br>
<b>Figure 2. Basic structure of the odor cassettes: iGEM prefix, <a href="http://parts.igem.org/Part:BBa_J23108">constitutive promoter</a>, synthetic ribosome-binding site, coding sequence with his tag, and iGEM suffix </b> </br>
</p>
</p>
 +
<h6>Results</h6>
 +
<br>
 +
<p class=text1>
 +
We created BioBricks coding for sequences of different enzymes to explore each of the odors described in the palette. These sequences are codon-optmized for produced expression in <i>E. coli</i> and produce the smells that compose the main odor categories perceived by humans. </p>
 +
</div>
<div id=part3 class=project>
<div id=part3 class=project>
<h6>Methods</h6>
<h6>Methods</h6>
Line 254: Line 268:
<br>
<br>
Transformed <i>E. coli</i> was grown in M9 minimal media with 2% glucose and complete amino acid mix overnight with the appropriate substrate.
Transformed <i>E. coli</i> was grown in M9 minimal media with 2% glucose and complete amino acid mix overnight with the appropriate substrate.
-
<style type="text/css">
+
<table class="tableizer-table">
-
table.tableizer-table {
+
-
border: 1px solid #CCC; font-family: Arial, Helvetica, sans-serif
+
-
font-size: 12px;
+
-
}
+
-
.tableizer-table td {
+
-
padding: 4px;
+
-
margin: 3px;
+
-
border: 1px solid #ccc;
+
-
}
+
-
.tableizer-table th {
+
-
background-color: #FA0063;
+
-
color: #FFF;
+
-
font-weight: bold;
+
-
}
+
-
</style><table class="tableizer-table">
+
<tr class="tableizer-firstrow"><th>System</th><th>Enzyme</th><th>Substrate</th><th>Concentration</th><th>Product</th></tr>
<tr class="tableizer-firstrow"><th>System</th><th>Enzyme</th><th>Substrate</th><th>Concentration</th><th>Product</th></tr>
  <tr><td>Jasmine</td><td>JMT</td><td>Jasmonic acid</td><td>1 mM</td><td>Methyl jasmonate</td></tr>
  <tr><td>Jasmine</td><td>JMT</td><td>Jasmonic acid</td><td>1 mM</td><td>Methyl jasmonate</td></tr>

Latest revision as of 15:56, 3 December 2014

BACKGROUND


Synthetic enzymes can produce odors that humans experience directly, without special instruments. The banana and wintergreeen smell BioBricks are iGEM icons, and a favorite way to introduce genetic engineering. An expanded library of easy-to-use odor enzymes would take synthetic biology to new audiences for creativity, beauty and fun!

AIMS


We standardized and simplified existing smell-producing BioBricks for banana, wintergreen, lemon and rain. Also, we created new BioBricks for the aromas of popcorn and jasmine. We made an odor wheel made out of genetic odors that follow a standard organization so that the general public can play with odor genes.

ACHIEVEMENTS


Introduction Results Methods

Figure 1. Odor palette composed of BioBricks containing coding sequences for different enzymes known to catalyze reactions that yield volatile compounds with distinctive smells. We included odors with different tonalities in order to explore the aromas resulting from different combinations of smelly units. The tonality of each smell is categorized as butter, balminess, citrus, non-citrus fruit and herbal. These cover half of the main odor categories perceivable to human beings.






Introduction

All living things can detect chemical signals from the environment. In humans, the direct chemical sense takes the form of olfaction. Although our sense of smell is less sensitive than that of other mammals, it is still capable of detecting many compounds at concentrations lower than 1 part per million. Odors can trigger emotional responses and memory associations, making them a very direct and visceral way to experience the environment.

Bacterial enzymes can produce volatile compounds, including many that are surprising and fun. A generation of iGEMers has had the chance to experience bacteria that smell like banana or mint. The goal of this project is to expand the range of odors that can be created with synthetic enzymes. An easy-to-use, standardized genetic odor library will empower a new generation to play with synthetic biological smells.

Figure 2. Basic structure of the odor cassettes: iGEM prefix, constitutive promoter, synthetic ribosome-binding site, coding sequence with his tag, and iGEM suffix

Results

We created BioBricks coding for sequences of different enzymes to explore each of the odors described in the palette. These sequences are codon-optmized for produced expression in E. coli and produce the smells that compose the main odor categories perceived by humans.

Methods

Odorless E. coli:
The tnaA deletion mutant E. coli was taken from location 63:E:9 in the Keio collection. Standard microbiology techniques were used to culture it in liquid and solid media. Subsequently, a single colony was taken to make a batch of Ca2Cl chemically competent cells using.

BioBricks:
The coding sequences for BMST1,ATF1, LIMS1 and GGS were extracted from the Registry. The ATF1 and LIMS1 generator BioBricks were taken from previous iGEM distribution kits and were cloned into the pSB1C3 vector downstream of BBa_J23108 constitutive promoter. The BMST1, JMT, and GDS sequences were codon optimized for expression in E. coli. A synthetic ribosome-binding site that includes XmaI and AgeI flanking restriction sites was designed using the RBS calculator from the Salis’ lab. All BioBricks were assembled using standard molecular biology cloning techniques and 3A iGEM assembly.

Characterization:
Transformed E. coli was grown in M9 minimal media with 2% glucose and complete amino acid mix overnight with the appropriate substrate.

SystemEnzymeSubstrateConcentrationProduct
JasmineJMTJasmonic acid1 mMMethyl jasmonate
MintBMST1Salicylic acid2 mMMethyl salicylate
BananaATF1Isoamyl alcohol5 mMIsoamyl acetate
LimoneneLIMS1Farnesyl diphosphateNatural(+)-Limonene
RainG/G D-synthaseFarnesyl diphosphateNaturalGeosmin
FlowersBMST1Benzoic acid5 mMMethyl benzoate
ButterAldBAcetolactic acid-Acetoin
SweatagaA3-M-2-hexenoic acid-3-HO-3-Methylhexanoic acid
Table 1. Substrate concentrations (mM).

Centre for Research and Interdisciplinarity (CRI)
Faculty of Medicine Cochin Port-Royal, South wing, 2nd floor
Paris Descartes University
24, rue du Faubourg Saint Jacques
75014 Paris, France
+33 1 44 41 25 22/25
paris-bettencourt-igem@googlegroups.com
Copyright (c) 2014 igem.org. All rights reserved.