Team:USTC-China/notebook/bib

From 2014.igem.org

(Difference between revisions)
 
(2 intermediate revisions not shown)
Line 47: Line 47:
      
      
     <div class="large-9 columns" id="content-page">
     <div class="large-9 columns" id="content-page">
-
       <div class="title"><h1>Overview</h1></div>
+
       <div class="title"><h1>Bibliography</h1></div>
       <div class="text">
       <div class="text">
         <ul>
         <ul>
Line 62: Line 62:
         <li>Evan J Olson; Lucas A Hartsough; Brian P Landry; Raghav Shroff; Jeffrey J Tabor <em>Characterizing bacterial gene circuit dynamics with Robert Penchovsky optically programmed gene expression signals</em> Nature Methods. 2014 . 10.1038/nmeth.2884</li>
         <li>Evan J Olson; Lucas A Hartsough; Brian P Landry; Raghav Shroff; Jeffrey J Tabor <em>Characterizing bacterial gene circuit dynamics with Robert Penchovsky optically programmed gene expression signals</em> Nature Methods. 2014 . 10.1038/nmeth.2884</li>
-
         <li>Michael P Robertson; Andrew Ellington <em>In vitro selection of an allosteric ribozyme that transduces analytes</eli>
+
         <li>Fan Bai et al <em>Conformational Spread as a Mechanism for Cooperativity in the Bacterial Flagellar Switch </em> Science, 2010, 10.1126</li>
 +
        <li>Qi Ma et al <em>Conformational Spread in the Flagellar Motor Switch : A Model Study</em> Computational Biology, 2012, E1002523</li>
-
         <li> amplicons</em> Nature Biotechnology. 1999 . 10.1038/5236</li>
+
         <li>Michael P Robertson; Andrew Ellington <em>In vitro selection of an allosteric ribozyme that transduces analytes amplicons</em> Nature Biotechnology. 1999 . 10.1038/5236</li>
         <li>Robert Penchovsky <em>Computational design and biosensor applications of small molecule-sensing allosteric ribozymes.</em> Biomacromolecules. 2013 . 10.1021/bm400299a</li>
         <li>Robert Penchovsky <em>Computational design and biosensor applications of small molecule-sensing allosteric ribozymes.</em> Biomacromolecules. 2013 . 10.1021/bm400299a</li>

Latest revision as of 03:58, 18 October 2014

Bibliography

  • Pamela J B Brown; Gail G Hardy; Michael J Trimble; Yves V Brun Complex regulatory pathways coordinate cell-cycle progression and development in Caulobacter crescentus. Advances in microbial physiology. 2009 . 10.1016/s0065-2911(08)00001-5
  • Steven Ringquist; Thomas Jones; Eric E Snyder; Terri Gibson; Irina Boni; Larry Gold High-Affinity RNA Ligands to Escherichia coli Ribosomes and Ribosomal Protein S1: Comparison of Natural and Unnatural Binding Sites Biochemistry. 1995 . 10.1021/bi00011a019
  • Robert Penchovsky Computational design and biosensor applications of small molecule-sensing allosteric ribozymes. Biomacromolecules. 2013 . 10.1021/bm400299a
  • Chunbo Lou; Brynne Stanton; Ying-Ja Chen; Brian Munsky; Christopher A Voigt Ribozyme-based insulator parts buffer synthetic circuits from genetic context Nature Biotechnology. 2012 . 10.1038/nbt.2401
  • Tina Glisovic; Jennifer L Bachorik; Jeongsik Yong; Gideon Dreyfuss RNA-binding proteins and post-transcriptional gene regulation FEBS Letters. 2008 . 10.1016/j.febslet.2008.03.004
  • Evan J Olson; Lucas A Hartsough; Brian P Landry; Raghav Shroff; Jeffrey J Tabor Characterizing bacterial gene circuit dynamics with Robert Penchovsky optically programmed gene expression signals Nature Methods. 2014 . 10.1038/nmeth.2884
  • Fan Bai et al Conformational Spread as a Mechanism for Cooperativity in the Bacterial Flagellar Switch Science, 2010, 10.1126
  • Qi Ma et al Conformational Spread in the Flagellar Motor Switch : A Model Study Computational Biology, 2012, E1002523
  • Michael P Robertson; Andrew Ellington In vitro selection of an allosteric ribozyme that transduces analytes amplicons Nature Biotechnology. 1999 . 10.1038/5236
  • Robert Penchovsky Computational design and biosensor applications of small molecule-sensing allosteric ribozymes. Biomacromolecules. 2013 . 10.1021/bm400299a
  • Simon Ausländer; Patrick Ketzer; Jörg S Hartig A ligand-dependent hammerhead ribozyme switch for controlling mammalian gene expression. Molecular bioSystems. 2010 . 10.1039/b923076a
  • Steven Ringquist; Thomas Jones; Eric E Snyder; Terri Gibson; Irina Boni; Larry Gold High-Affinity RNA Ligands to Escherichia coli Ribosomes and Ribosomal Protein S1: Comparison of Natural and Unnatural Binding Sites Biochemistry. 1995 . 10.1021/bi00011a019
  • Dipankar Sen The use of light to investDipankar Sen igate and modulate DNA and RNA conformations Nucleic Acids Symposium Series. 2008 . 10.1093/nass/nrn006
  • Travis S Bayer; Christina D Smolke Programmable ligand-controlled riboregulators of eukaryotic gene expression Nature Biotechnology. 2005 . 10.1038/nbt1069
  • Andreas Möglich; Rebecca A Ayers; Keith Moffat Design and signaling mechanism of light-regulated histidine kinases. Journal of molecular biology. 2009 . 10.1016/j.jmb.2008.12.017
  • Aretha Fiebig; Julien Herrou; Coralie Fumeaux; Sunish K Radhakrishnan; Patrick H Viollier; Sean Crosson A Cell Cycle and Nutritional Checkpoint ontrolling Bacterial Surface Adhesion PLoS Genetics. 2014 . 10.1371/journal.pgen.1004101
  • atthias Christen; Beat Christen; Martin G Allan; Marc Folcher; Paul Jenö; Stephan Grzesiek; Urs Jenal DgrA is a member of a new family of cyclic diguanosine monophosphate receptors and controls flagellar motor function in Caulobacter crescentus. Proceedings of the National Academy of Sciences. 2007 . 10.1073/pnas.0607738104
  • Fang Teng; Barbara E Murray; George M Weinstock Conjugal Transfer of Plasmid DNA fromEscherichia colito Enterococci: A Method to Make Insertion Mutations Plasmid. 1998 . 10.1006/plas.1998.1336
  • Jeffrey J Tabor; Anselm Levskaya; Christopher A Voigt Multichromatic Control of Gene Expression in Escherichia coli Journal of Molecular Biology. 2011 . 10.1016/j.jmb.2010.10.038